Publications

2024 | 2023 | 2022 | 2021 | 2020

2024

Heim, G. P.; Bruening, M. A.; Musgrave, C. B.; Goddard, W. A.; Peters, J. C.; Agapie, T. Potassium ion modulation of the Cu electrode-electrolyte interface with ionomers enhances CO2 reduction to C2+ products. Joule. 2024.

DOI: 10.1016/j.joule.2024.03.019

Fishler, Y.; Leick, N.; Teeter, G.; Holewinski, A.; Smith, W. A. Layered Sn–Au Thin Films for Increased Electrochemical ATR-SEIRAS Enhancement. ACS Applied Materials & Interfaces. 2024, 16 (15), 19780-19791.

DOI: 10.1021/acsami.4c01525

Chan, T.; Kong, C. J.; King, A. J.; Babbe, F.; Prabhakar, R. R.; Kubiak, C. P.; Ager, J. W. Role of Mass Transport in Electrochemical CO2 Reduction to Methanol Using Immobilized Cobalt Phthalocyanine. ACS Applied Energy Materials. 2024, 7 (8), 3091–3098.

DOI: 10.1021/acsaem.3c02979

Ke, S.; Mangum, J. S.; Zakutayev, A.; Greenaway, A. L.; Neaton, J. B. First-Principles Studies of the Electronic and Optical Properties of Zinc Titanium Nitride: The Role of Cation Disorder. Chemistry of Materials. 2024, 36 (7), 3164-3176.

DOI: 10.1021/acs.chemmater.3c02696

Kim, Y.; Mendes, J. L.; Michelsen, J. M.; Shin, H. J.; Lee, N.; Choi, Y. J.; Cushing, S. K. Coherent charge hopping suppresses photoexcited small polarons in ErFeO3 by antiadiabatic formation mechanism. Science Advances. 2024, 10 (12).

DOI: 10.1126/sciadv.adk4282

Palmer, L. D.; Lee, W.; Dong, C.; Liu, R.; Wu, N.; Cushing, S. K. Determining Quasi-Equilibrium Electron and Hole Distributions of Plasmonic Photocatalysts Using Photomodulated X-ray Absorption Spectroscopy. ACS Nano. 2024, 18 (13), 9344-9353.

DOI: 10.1021/acsnano.3c08181

Choi, C.; Kwon, S.; Gao, Y.; Cheon, S.; Li, J.; Menges, F.; Goddard, W. A.; Wang, H. CO2-Promoted Electrocatalytic Reduction of Chlorinated Hydrocarbons. Journal of the American Chemical Society. 2024, 146 (12), 8486–8491.

DOI: 10.1021/jacs.3c14564

Watkins, N. B.; Lai, Y.; Schiffer, Z. J.; Canestraight, V. M.; Atwater, H. A.; Agapie, T.; Peters, J. C.; Gregoire, J. M. Electrode Surface Heating with Organic Films Improves CO2 Reduction Kinetics on Copper. ACS Energy Letters. 2024, 9, (4), 1440-1445.

DOI: 10.1021/acsenergylett.4c00204

Chan, T.; Zoric, M. R.; Shandilya, A.; Loeb, C. K.; Barrett, J. A.; Cordones, A. A.; Kubiak, C. P. Simple Preparation and Characterization of Hybrid Cobalt Phthalocyanine on Multiwalled Carbon Nanotube Electrodes. ACS Applied Energy Materials. 2024, 7 (6), 2225-2233.

DOI: 10.1021/acsaem.3c02953

Pada Sarker, H.; Abild‐Pedersen, F.; Bajdich, M. Prediction of Feasibility of Polaronic OER on (110) Surface of Rutile TiO2. ChemPhysChem. 2024.

DOI: 10.1002/cphc.202400060

Yap, K. M. K.; Wei, W. J.; Rodríguez Pabón, M.; King, A. J.; Bui, J. C.; Wei, L.; Lee, S.; Weber, A. Z.; Bell, A. T.; Nielander, A. C.; Jaramillo, T. F. Modeling diurnal and annual ethylene generation from solar-driven electrochemical CO2 reduction devices. Energy & Environmental Science. 2024, 17 (7), 2453-2467.

DOI: 10.1039/D4EE00545G

Kang, R.; Zhao, Y.; Hait, D.; Gauthier, J. A.; Kempler, P. A.; Thurman, K. A.; Boettcher, S. W.; Head-Gordon, M. Understanding ion-transfer reactions in silver electrodissolution and electrodeposition from first-principles calculations and experiments. Chemical Science. 2024, 15 (13), 4996-5008.

DOI: 10.1039/D3SC05791G

Goddard, W. A.; Musgrave, C. B. Electrochemical Nitrate Reduction Catalyzed by Two-Dimensional Transition Metal Borides. The Journal of Physical Chemistry Letters. 2024, 15 (7), 1899-1907.

DOI: 10.1021/acs.jpclett.4c00054

Zhao, Y.; Hu, X.; Stucky, G. D.; Boettcher, S. W. Thermodynamic, Kinetic, and Transport Contributions to Hydrogen Evolution Activity and Electrolyte-Stability Windows for Water-in-Salt Electrolytes. Journal of the American Chemical Society. 2024, 146 (5), 3438-3448.

DOI: 10.1021/jacs.3c12980

Cho, J.; Medina, A.; Saih, I.; Il Choi, J.; Drexler, M.; Goddard, W. A.; Alamgir, F. M.; Jang, Seung S. 2D Metal/Graphene and 2D Metal/Graphene/Metal Systems for Electrocatalytic Conversion of CO2 to Formic Acid. Angewandte Chemie International Edition. 2024, 63 (12).

DOI: 10.1002/anie.202320268

DeLuca, E. E.; Chan, T.; Taylor, J. M.; Lee, B.; Prabhakar, R. R.; Kubiak, C. P. Steric Effects on CO2 Reduction with Substituted Mn(bpy)(CO)3X-Type Catalysts on Multiwalled Carbon Nanotubes Reveal Critical Mechanistic Details. ACS Catalysis. 2024, 14 (3), 2071-2083.

DOI: 10.1021/acscatal.3c05771

Agbo, P. An Expansion of Polarization Control Using Semiconductor–Liquid Junctions. The Journal of Physical Chemistry Letters. 2024, 15 (4), 1135-1142.

DOI: 10.1021/acs.jpclett.3c03051

Mangum, J. S.; Ke, S.; Gish, M.a K.; Raulerson, E. K.; Perkins, C. L.; Neaton, J. B.; Zakutayev, A.; Greenaway, A. L. Sn-assisted heteroepitaxy improves ZnTiN2 photoabsorbers. Journal of Materials Chemistry A. 2024, 12 (8), 4544-4554.

DOI: 10.1039/D3TA06200G

Aitbekova, A.; Watkins, N.; Richter, M. H.; Jahelka, P.; Peters, J. C.; Agapie, T.; Atwater, H. A. Molecular Additives Improve the Selectivity of CO2 Photoelectrochemical Reduction over Gold Nanoparticles on Gallium Nitride. Nano Letters. 2024, 24 (4), 1090-1095.

DOI: 10.1021/acs.nanolett.3c03590

Yang, M. Y.; O’Mari, O.; Goddard, W. A.; Vullev, V. I. How Permanent Are the Permanent Macrodipoles of Anthranilamide Bioinspired Molecular Electrets? Journal of the American Chemical Society. 2024.

DOI: 10.1021/jacs.3c10525

Bui, J. C.; Lees, E. W.; Marin, D. H.; Stovall, T. N.; Chen, L.; Kusoglu, A.; Nielander, A. C.; Jaramillo, T. F.; Boettcher, S. W.; Bell, A. T.; Weber, A. Z. Multi-scale physics of bipolar membranes in electrochemical processes. Nature Chemical Engineering. 2024, 1 (1), 45-60.

DOI: 10.1038/s44286-023-00009-x

2023

Musgrave, C. B.; Li, Y.; Luo, Z.; Goddard, W. A. Dual atom catalysts for rapid electrochemical reduction of CO to ethylene. Nano Energy. 2023, 118, 108966.

DOI: 10.1016/j.nanoen.2023.108966

Wei, W. J.; King, A. J.; Bui, J. C.; Weber, A. Z.; Bell, A. T. Co-Design of Multijunction Photoelectrochemical Devices for Unassisted CO2 Reduction to Multicarbon Products. Journal of The Electrochemical Society. 2023, 170, 126502.

DOI: 10.1149/1945-7111/ad10e7

Atwater, H. A. Artificial photosynthesis: A pathway to solar fuels. Physics Today. 2023, 76 (12), 32-39.

DOI: 10.1063/PT.3.5360

Kan, K.; Guevarra, D.; Zhou, L.; Jones, R. J. R.; Lai, Y.; Richter, M.; Gregoire, J. M. Accelerated Characterization of Electrode‐Electrolyte Equilibration. ChemCatChem. 2023, e202301300.

DOI: 10.1002/cctc.202301300

Zhou, L.; Shinde, A.; Chang, M.; Bruce Van Dover, R.; Thompson, M. O.; Gregoire, J. M. High throughput identification of complex rutile alloys for the acidic oxygen evolution reaction. Journal of Materials Chemistry A. 2023, 11 (46), 25262-25267.

DOI: 10.1039/D3TA04899C

Woods-Robinson, R.l.; Persson, K. A.; Zakutayev, A. Stability and synthesis across barium tin sulfide material space. Journal of Materials Chemistry A. 2023, 11 (45), 24948-24958.

DOI: 10.1039/D3TA04431A

Lee, D. U.; Joensen, B.; Jenny, J.; Ehlinger, V. M.; Lee, S.; Abiose, K.; Xu, Y.; Sarkar, A.; Lin, T. Y.; Hahn, C.; Jaramillo, T. F. Controlling Mass Transport in Direct Carbon Dioxide Zero-Gap Electrolyzers via Cell Compression. ACS Sustainable Chemistry & Engineering. 2023, 11 (46), 16661-16668.

DOI: 10.1021/acssuschemeng.3c05494

Liang, J.; Ma, K.; Zhao, X.; Lu, G.; et al. Elucidating the Mechanism of Large Phosphate Molecule Intercalation Through Graphene-Substrate Heterointerfaces. ACS Applied Materials & Interfaces. 2023, 15 (40), 47649-47660.

DOI: 10.1021/acsami.3c07763

Osella, S.; Goddard Iii, W. A.CO2 Reduction to Methane and Ethylene on a Single-Atom Catalyst: A Grand Canonical Quantum Mechanics Study. Journal of the American Chemical Society. 2023, 145 (39), 21319-21329.

DOI: 10.1021/jacs.3c05650

Guevarra, D.; Kan, K.; Lai, Y.; Jones, R. J. R.; Zhou, L.; Donnelly, P.; Richter, M.; Stein, H. S.; Gregoire, J. M. Orchestrating nimble experiments across interconnected labs. Digital Discovery. 2023, 2 (6), 1806-1812.

DOI: 10.1039/D3DD00166K

Cherrette, V. L.; Babbe, F.; Cooper, J. K.; Zhang, J. Z. Octahedral Distortions Generate a Thermally Activated Phonon-Assisted Radiative Recombination Pathway in Cubic CsPbBr3 Perovskite Quantum Dots. The Journal of Physical Chemistry Letters. 2023, 14 (39), 8717-8725.

DOI: 10.1021/acs.jpclett.3c02568

Zhou, B.; Ma, Y.; Ou, P.; Ye, Z.; et al. Light-driven synthesis of C2H6 from CO2 and H2O on a bimetallic AuIr composite supported on InGaN nanowires. Nature Catalysis. 2023.

DOI: 10.1038/s41929-023-01023-1

Bui, J. C.; Lucas, É.; Lees, E. W.; Liu, A. K.; Atwater, H. A.; Xiang, C.; Bell, A. T.; Weber, A. Z. Analysis of bipolar membranes for electrochemical CO2 capture from air and oceanwater. Energy & Environmental Science. 2023, 16 (11), 5076-5095.

DOI: 10.1039/D3EE01606D

Sun, Q.; Oliveira, N. J.; Kwon, S.; Tyukhtenko, S.; et al. Understanding hydrogen electrocatalysis by probing the hydrogen-bond network of water at the electrified Pt–solution interface. Nature Energy. 2023, 8 (8), 859-869.

DOI: 10.1038/s41560-023-01302-y

Su, J.; Musgrave, C. B.; Song, Y.; Huang, L.; Liu, Y.; Li, G.; Xin, Y.; Xiong, P.; Li, Molly M.; Wu, H.; Zhu, M.; Chen, H. M.; Zhang, J.; Shen, H.; Tang, Ben Z.; Robert, M.; Goddard, W. A.; Ye, R. Strain enhances the activity of molecular electrocatalysts via carbon nanotube supports. Nature Catalysis. 2023.

DOI: 10.1038/s41929-023-01005-3

Bonchio, M.; Bonin, J.; Ishitani, O.; Lu, T.; Morikawa, T.; Morris, A. J.; Reisner, E.; Sarkar, D.; Toma, F. M.; Robert, M. Best practices for experiments and reporting in photocatalytic CO2 reduction. Nature Catalysis. 2023, 6 (8), 657-665.

DOI: 10.1038/s41929-023-00992-7

Rome, G. A.; Intia, F.; Klein, T. R.; Schichtl, Z. G.; Tamboli, A. C.; Warren, E. L.; Greenaway, A. L. Transparent Conductive Encapsulants for Photoelectrochemical Applications. ChemElectroChem. 2023.

DOI: 10.1002/celc.202300209

Qiao, Y.; Kastlunger, G.; Davis, R. C.; Rodriguez, C. A. G.; Vishart, A.; Deng, W.; Xu, Q.; Li, S.; Benedek, P.; Chen, J.; Schröder, J.; Perryman, J.; Lee, D.; Jaramillo, T. F.; Chorkendorff, I.; Seger, B. Mechanistic Insights into Aldehyde Production from Electrochemical CO2 Reduction on CuAg Alloy via Operando X-ray Measurements. ACS Catalysis. 2023, 13 (14), 9379-9391.

DOI: 10.1021/acscatal.3c01009

Statt, M. J.; Rohr, B. A.; Brown, K.; Guevarra, D.; Hummelshøj, J.; Hung, L.; Anapolsky, A.; Gregoire, J. M.; Suram, S. K. ESAMP: event-sourced architecture for materials provenance management and application to accelerated materials discovery. Digital Discovery. 2023, 2 (4), 1078-1088.

DOI: 10.1039/D3DD00054K

Qiao, Yu; Kastlunger, Georg; Davis, Ryan C.; et al. Mechanistic Insights into Aldehyde Production from Electrochemical CO2 Reduction on CuAg Alloy via Operando X-ray Measurements. ACS Catalysis. 2023, 13 (14), 9379-9391.

DOI: 10.1021/acscatal.3c01009

Horio, M.; Sumi, T.; Bullock, J.; Hirata, Y.; et al. Detecting driving potentials at the buried SiO2 nanolayers in solar cells by chemical-selective nonlinear x-ray spectroscopy. Applied Physics Letters. 2023, 123 (3), 31602.

DOI: 10.1063/5.0156171

Xu, Y.; Zheng, M.; Musgrave, C. B.; Zhang, L.; Goddard, W. A.; Bukowski, B. C.; Liu, Y. Assessing the Kinetics of Quinone–CO2 Adduct Formation for Electrochemically Mediated Carbon Capture. ACS Sustainable Chem. Eng. 2023, 11 (30), 11333-11341.

DOI: 10.1021/acssuschemeng.3c03321

Li, S.; Kwon, S.; Goddard, W. A.; Houle, F. A. A stochastic description of pH within nanoscopic water pools. Cell Reports Physical Science. 2023, 4 (6), 101458.

DOI: 10.1016/j.xcrp.2023.101458

Yap, K. M. K.; Lee, S.; Steiner, M. A.; Avilés Acosta, J. E.; Kang, D.; Kim, D.; Warren, E. L.; Nielander, A. C.; Jaramillo, T. F. A framework for understanding efficient diurnal CO2 reduction using Si and GaAs photocathodes. Chem Catalysis. 2023, 3 (6), 100641.

DOI: 10.1016/j.checat.2023.100641

Avilés Acosta, J. E.; Lin, J. C.; Un Lee, D.; Jaramillo, T. F.; Hahn, C. Electrochemical Flow Reactor Design Allows Tunable Mass Transport Conditions for Operando Surface Enhanced Infrared Absorption Spectroscopy. ChemCatChem. 2023.

DOI: 10.1002/cctc.202300520

Lin, J.; Roh, I.; Yang, P. Photochemical Diodes for Simultaneous Bias-Free Glycerol Valorization and Hydrogen Evolution. J. Am. Chem. Soc. 2023.

DOI: 10.1021/jacs.3c01982

Soobrian, B.; King, A. J.; Bui, J. C.; Weber, A. Z.; Bell, A. T.; Houle, F. A. Toward a Diverse Next-Generation Energy Workforce: Teaching Artificial Photosynthesis and Electrochemistry in Elementary Schools through Active Learning. J. Chem. Educ. 2023.

DOI: 10.1021/acs.jchemed.3c00085

Jung, H.; Kim, C.; Yoo, H.; You, J.; Kim, J. S.; Jamal, A.; Gereige, I.; Ager, J. W.; Jung, H. Continuous-flow reactor with superior production rate and stability for CO2 reduction using semiconductor photocatalysts. Energy Environ. Sci. 2023, 16 (7), 2869-2878.

DOI: 10.1039/D3EE00507K

Corpus, K. M.; Bui, J. C.; Limaye, A. M.; Pant, L. M.; Manthiram, K.; Weber, A. Z.; Bell, A. T. Coupling covariance matrix adaptation with continuum modeling for determination of kinetic parameters associated with electrochemical CO2 reduction. Joule. 2023.

DOI: 10.1016/j.joule.2023.05.007

Dolmanan, S. B.; Böhme, A.; Fan, Z.; King, A. J.; Fenwick, A. Q.; Handoko, A. D.; Leow, W. R.; Weber, A. Z.; Ma, X.; Khoo, E.; Atwater, H. A.; Lum, Y. Local microenvironment tuning induces switching between electrochemical CO2 reduction pathways. J. Mater. Chem. A. 2023, 11 (25), 13493-13501.

DOI: 10.1039/D3TA02558F

Kim, Chanyeon; King, Alex J.; Aloni, Shaul; Toma, Francesca M.; Weber, Adam Z.; Bell, Alexis T. Codesign of an integrated metal–insulator–semiconductor photocathode for photoelectrochemical reduction of CO2 to ethylene. Energy Environ. Sci. 2023.

DOI: 10.1039/D2EE03525A

Prabhakar, R. R.; Lemerle, R.; Barecka, M.; Kim, M.; Seo, S.; Dayi, E.N.; Dei Tos, I.; Ager, J. W. TaOx electron transport layers for CO2 reduction Si photocathodes. J. Mater. Chem. A. 2023.

DOI: 10.1039/D3TA01028G

King, A. J.; Weber, A. Z.; Bell, A. T. Theory and Simulation of Metal–Insulator–Semiconductor (MIS) Photoelectrodes. ACS Appl. Mater. Interfaces. 2023, 15 (19), 23024-23039.

DOI: 10.1021/acsami.2c21114

Epstein, A. R.; Spotte-Smith, E. W. C.; Venetos, M. C.; Andriuc, O.; Persson, K. A. Assessing the Accuracy of Density Functional Approximations for Predicting Hydrolysis Reaction Kinetics. J. Chem. Theory Comput. 2023.

DOI: 10.1021/acs.jctc.3c00176

Zhang, H.; Cheng, D.; Xiang, C.; Lin, M. Tuning the Interfacial Electrical Field of Bipolar Membranes with Temperature and Electrolyte Concentration for Enhanced Water Dissociation. ACS Sustainable Chem. Eng. 2023, 11 (21), 8044–8054.

DOI: 10.1021/acssuschemeng.3c00142

Houle, F. A.; Yano, J.; Ager, J. W. Hurry Up and Wait: Managing the Inherent Mismatches in Time Scales in Natural and Artificial Photosynthetic Systems. ACS Catalysis. 2023, 12 (11), 7139-7158.

DOI: 10.1021/acscatal.3c00355

Musgrave, C. B.; Olsen, K.; Liebov, N. S.; Groves, J. T.; Goddard, W. A.; Gunnoe, T. B. Partial Oxidation of Methane Enabled by Decatungstate Photocatalysis Coupled to Free Radical Chemistry. ACS Catalysis. 2023, 13 (9), 6382-6395.

DOI: 10.1021/acscatal.3c00750

Watkins, N. B.; Schiffer, Z. J.; Lai, Y.; Musgrave, C. B.; Atwater, H. A.; Goddard, W. A.; Agapie, T.; Peters, J. C.; Gregoire, J. M. Hydrodynamics Change Tafel Slopes in Electrochemical CO2 Reduction on Copper. ACS Energy Lett. 2023, 8, 2185-2192.

DOI: 10.1021/acsenergylett.3c00442

Statt, M. J.; Rohr, B. A.; Guevarra, D.; Suram, S. K.; Morrell, T. E.; Gregoire, J. M. The Materials Provenance Store. Scientific Data. 2023, 10 (1), 184.

DOI: 10.1038/s41597-023-02107-0

Zhu, K.; Naserifar, S.; Goddard, W. A.; Su, H. Topology induced crossover between Langevin, subdiffusion, and Brownian diffusion regimes in supercooled water. Phys. Chem. Chem. Phys. 2023, 25 (15), 10353-10366.

DOI: 10.1039/D2CP04645H

Utterback, J. K.; King, A. J.; Belman-Wells, L.; Larson, D. M.; Hamerlynck, L. M.; Weber, A. Z.; Ginsberg, N. S. Operando Label-Free Optical Imaging of Solution-Phase Ion Transport and Electrochemistry. ACS Energy Lett. 2023, 8 (3), 1785-1792.

DOI: 10.1021/acsenergylett.3c00129

Jung, H.; Ager, J. W. A tipping point for solar production of hydrogen? Joule. 2023, 7 (3), 459-461.

DOI: 10.1016/j.joule.2023.02.016

Nie, W.; Heim, G. P.; Watkins, N. B.; Agapie, T.; Peters, J. C. Organic Additive-derived Films on Cu Electrodes Promote Electrochemical CO2 Reduction to C2+ Products Under Strongly Acidic Conditions. Angew Chem Int Ed. 2023, 62 (12).

DOI: 10.1002/anie.202216102

Gregoire, J. M.; Zhou, L.; Haber, J. A. Combinatorial synthesis for AI-driven materials discovery. Nature Synthesis. 2023.

DOI: 10.1038/s44160-023-00251-4

Liu, H.; Michelsen, J. M.; Mendes, J. L.; Klein, I. M.; Bauers, S. R.; Evans, J. M.; Zakutayev, A.; Cushing, S. K. Measuring Photoexcited Electron and Hole Dynamics in ZnTe and Modeling Excited State Core-Valence Effects in Transient Extreme Ultraviolet Reflection Spectroscopy. J. Phys. Chem. Lett. 2023, 14 (8), 2106-2111.

DOI: 10.1021/acs.jpclett.2c03894

Kempler, Paul A.; Nielander, Adam C. Reliable reporting of Faradaic efficiencies for electrocatalysis research. Nature Communications. 2023, 14 (1), 1158.

DOI: 10.1038/s41467-023-36880-8

Schiffer, Z. J.; Cushing, S. Reports From The Frontier-Heterogeneous Electrocatalysts for Sustainable Electrochemical Synthesis. Electrochem. Soc. Interface. 2023, 32 (1), 37-39.

DOI: 10.1149/2.F05231IF

Zoric, M. R.; Chan, T.; Musgrave, C. B.; Goddard, W. A.; Kubiak, C. P.; Cordones, A. A. In situ x-ray absorption investigations of a heterogenized molecular catalyst and its interaction with a carbon nanotube support. J. Chem. Phys. 2023, 158 (7), 74703.

DOI: 10.1063/5.0129724

Boehme, A.; Bui, J.; Fenwick, A. Q.; Bhide, R.; Feltenberger, C.; Welch, A. J.; King, A. J.; Weber, A. Z.; Bell, A. T.; Ardo, S.; Atwater, H. A. Direct Observation of the Local Microenvironment in Inhomogeneous CO2 Reduction Gas Diffusion Electrodes via Versatile pOH Imaging. Energy & Environmental Science. 2023, 4 (16), 1783-1795.

DOI: 10.1039/D2EE02607D

Tamtaji, M.; Cai, S.; Wu, W.; Liu, T.; et al. Single and dual metal atom catalysts for enhanced singlet oxygen generation and oxygen reduction reaction. J. Mater. Chem. A. 2023, 11 (12), 7513-7525.

DOI: 10.1039/D2TA08240C

Andrei, V.; Roh, I.; Yang, P. Nanowire photochemical diodes for artificial photosynthesis. Science Advances. 2023, 9 (6).

DOI: 10.1126/sciadv.ade9044

Hossain, M. D.; Liu, Z.; Liu, H.; et al. The kinetics and potential dependence of the hydrogen evolution reaction optimized for the basal-plane Te vacancy site of MoTe2. Chem Catalysis. 2023, 3 (1), 100489.

DOI: 10.1016/j.checat.2022.100489

Sassenburg, M.; Kelly, M.; Subramanian, S.; Smith, W. A.; Burdyny, T. K. Zero-Gap Electrochemical CO2 Reduction Cells: Challenges and Operational Strategies for Prevention of Salt Precipitation. ACS Energy Lett. 2023, 8 (1), 321-331.

DOI: 10.1021/acsenergylett.2c01885

2022

Palfey, W. R.; Rossman, G. R.; Goddard, W. A. Behavior of Hydrogarnet‐Type Defects in Hydrous Stishovite at Various Temperatures and Pressures. JGR Solid Earth. 2022, 128 (2).

DOI: 10.1029/2022JB024980

Kumar Rao, K.; Zhou, L.; Lai, Y.; Richter, M.; Li, X.; Lu, Y.; Yano, J.; Gregoire, J.; Bajdich, M. Resolving Atomistic Structure and Oxygen Evolution Activity in Nickel Antimonates.  J. Mater. Chem. A. 2022.

DOI: 10.1039/D2TA08854A

Yang, R.X.; McCandler, C. A.; Andriuc, O.; Siron, M.; Woods-Robinson, R.; Horton, M. K.; Persson, K. A. Big Data in a Nano World: A Review on Computational, Data-Driven Design of Nanomaterials Structures, Properties, and Synthesis. ACS Nano. 2022, 16 (12), 19873-19891.

DOI: 10.1021/acsnano.2c08411

Chen, H.; Sangalli, D.; Bernardi, M. First-principles ultrafast exciton dynamics and time-domain spectroscopies: Dark-exciton mediated valley depolarization in monolayer WSe 2. Phys. Rev. Research. 2022, 4 (4), 43203.

DOI: 10.1103/PhysRevResearch.4.043203

Choi, C.; Wang, X.; Kwon, S.; et al. Efficient electrocatalytic valorization of chlorinated organic water pollutant to ethylene.  Nat. Nanotechnol. 2022, 18, 160-167.

DOI: 10.1038/s41565-022-01277-z

Follmer, A. H.; Luedecke, K. M.; Hadt, R. G. μ-Oxo Dimerization Effects on Ground- and Excited-State Properties of a Water-Soluble Iron Porphyrin CO2 Reduction Catalyst. Inorg. Chem. 2022, 61 (50), 20493-20500.

DOI: 10.1021/acs.inorgchem.2c03215

Zhou, L.; Peterson, E. A.; Richter, M. H.; Lai, Y.; Neaton, J. B.; Gregoire, J. M. Fe Substitutions Improve Spectral Response of Bi2WO6-Based Photoanodes. ACS Appl. Energy Mater. 2022, 5 (12), 15333–15344

DOI: 10.1021/acsaem.2c02964

Musgrave III, C. B.; Prokofjevs, A.; Goddard III, W. A. Phosphine Modulation for Enhanced CO2 Capture: Quantum Mechanics Predictions of New Materials.  J. Phys. Chem. Lett. 2022, 13 (48), 11183-11190.

DOI: 10.1021/acs.jpclett.2c03145

Watkins, N. B.; Wu, Y.; Nie, W.; Peters, J. C.; Agapie, T. In Situ Deposited Polyaromatic Layer Generates Robust Copper Catalyst for Selective Electrochemical CO2 Reduction at Variable pH. ACS Energy Lett. 2022, 8 (1), 189-195.

DOI: 10.1021/acsenergylett.2c02002

Zhou, L.; Wang, Y.; Kan, K.; Lucana, D. M.; Guevarra, D.; Lai, Y.; Gregoire, J. M. Surveying Metal Antimonate Photoanodes for Solar Fuel Generation. ACS Sustainable Chem. Eng. 2022, 10 (48), 15898–15908.

DOI: 10.1021/acssuschemeng.2c05239

Peterson, E. A.; Debela, T. T.; Gomoro, G. M.; Neaton, J. B.; Asres, G. A. Electronic structure of strain-tunable Janus WSSe–ZnO heterostructures from first-principles. RSC Adv. 2022, 12 (48), 31303-31316.

DOI: 10.1039/D2RA05533C

Xu, D.; Sullivan, I.; Xiang, C.; Lin, M. Comparative Study on Electrochemical and Thermochemical Pathways for Carbonaceous Fuel Generation Using Sunlight and Air. ACS Sustainable Chem. Eng. 2022, 10 (42), 13945-13954.

DOI: 10.1021/acssuschemeng.2c03230

Culman, T. H.; Woods-Robinson, R.; Mangum, J. S.; et al. Nitrogen stabilizes the wurtzite polymorph in ZnSe1−xTex thin films. J. Mater. Chem. C. 2022, 10 (42), 15806-15815.

DOI: 10.1039/D2TC02716J

Kong, C. J.; Prabhakar, R. R.; Ager, J. W. Electrochemical conversion of carbon dioxide to methyl formate with flue gas as a feedstock. Chem Catalysis. 2022, 2 (9), 2124-2126.

DOI: 10.1016/j.checat.2022.08.018

Schnepf, R. R.; Tellekamp, M. B.; Saenz, T.; et al. Epitaxial ZnGeP2 Thin Films on Si and GaP by Reactive Combinatorial Sputtering in Phosphine. Crystal Growth & Design. 2022, 22 (10), 6131–6139.

DOI: 10.1021/acs.cgd.2c00723

Hong, K.; Tan, S.; McDermott, M. J.; et al. Shape-Controlled NaTaO3 by Flux-Mediated Synthesis. Adv Funct Materials. 2022, 32 (46), 2206641.

DOI: 10.1002/adfm.202206641

Sun, Y.; Shin, H.; Wang, F.; et al. Highly Selective Electrocatalytic Oxidation of Amines to Nitriles Assisted by Water Oxidation on Metal-Doped α-Ni(OH)2. J. Am. Chem. Soc. 2022, 144 (33), 15185-15192.

DOI: 10.1021/jacs.2c05403

King, A. J.; Bui, J. C.; Bell, A. T.; Weber, A. Z. Establishing the Role of Operating Potential and Mass Transfer in Multicarbon Product Generation for Photoelectrochemical CO2 Reduction Cells Using a Cu Catalyst. ACS Energy Lett. 2022, 7 (8), 2694-2700.

DOI: 10.1021/acsenergylett.2c01041

Lei, Y.; Li, Y.; Lu, C.; et al. Perovskite superlattices with efficient carrier dynamics. Nature. 2022, 608 (7922), 317-323.

DOI: 10.1038/s41586-022-04961-1

Siron, M.; Andriuc, O.; Persson, K. A. Data-Driven Investigation of Tellurium-Containing Semiconductors for CO2 Reduction: Trends in Adsorption and Scaling Relations. J. Phys. Chem. C. 2022, 126 (31), 13224-13236.

DOI: 10.1021/acs.jpcc.2c04810

Cheng, W.; Richter, M. H.; Müller, R.; et al. Integrated Solar-Driven Device with a Front Surface Semitransparent Catalysts for Unassisted CO2 Reduction. Advanced Energy Materials. A. 2022, 12 (36), 2201062.

DOI: 10.1002/aenm.202201062

Greenaway, A. L.; Ke, S.; Culman, T.; et al. Zinc Titanium Nitride Semiconductor toward Durable Photoelectrochemical Applications. J. Am. Chem. Soc. 2022, 144 (30), 13673–13687.

DOI: 10.1021/jacs.2c04241

Zhou, L.; Peterson, E. A.; Rao, K. K.; et al. Addressing solar photochemistry durability with an amorphous nickel antimonate photoanode. Cell Reports Physical Science. 2022, 3 (7), 100959.

DOI: 10.1016/j.xcrp.2022.100959

Zhou, L.; Guevarra, D.; Gregoire, J. M. High throughput discovery of enhanced visible photoactivity in Fe-Cr vanadate solar fuels photoanodes. J. Phys. Energy. 2022, 4 (4).

DOI: 10.1088/2515-7655/ac817e

Klein, I. M.; Liu, H.; Nimlos, D.; Krotz, A.; Cushing, S. K. AbInitio Prediction of Excited-State and Polaron Effects in Transient XUV Measurements of α-Fe2O3. J. Am. Chem. Soc. 2022, 144 (28), 12834-12841.

DOI: 10.1021/jacs.2c03994

Li, J.; Halldin Stenlid, J.; Tang, M. T.; Peng, H.; Abild-Pedersen, F. Screening binary alloys for electrochemical CO2 reduction towards multi-carbon products. J. Mater. Chem. A. 2022, 10 (30), 16171-16181.

DOI: 10.1039/D2TA02749F

Khan, I. S.; Ablekim, T.; McGott, D. L.; Good, B.; Perkins, C. L.; Zakutayev, A. Codesigning Alloy Compositions of CdSeyTe1−y Absorbers and MgxZn1−xO Contacts to Increase Solar Cell Efficiency. Solar RRL. 2022.

DOI: 10.1002/solr.202200394

Hait, D.; Oosterbaan, K. J.; Carter-Fenk, K.; Head-Gordon, M. Computing x-ray absorption spectra from linear-response particles atop optimized holes. J. Chem. Phys. 2022, 156 (20), 201104.

DOI: 10.1063/5.0092987

Segev, G.; et al. The 2022 Solar Fuels Roadmap. J. Phys. D: Appl. Phys. 2022, 55, 323003.

DOI: 10.1088/1361-6463/ac6f97

Roh, I.; Yu, S.; Lin, C.; Louisia, S.; Cestellos-Blanco, S.; Yang, P. Photoelectrochemical CO2 Reduction toward Multicarbon Products with Silicon Nanowire Photocathodes Interfaced with Copper Nanoparticles. J. Am. Chem. Soc. 2022, 144 (18), 8002-8006.

DOI: 10.1021/jacs.2c03702

He, M.; Chang, X.; Chao, T.; Li, C.; Goddard, W. A.; Cheng, M.; Xu, B.; Lu, Q. Selective Enhancement of Methane Formation in Electrochemical CO2 Reduction Enabled by a Raman-Inactive Oxygen-Containing Species on Cu. ACS Catal. 2022, 12 (10), 6036-6049.

DOI: 10.1021/acscatal.2c00087

Bui, J. C.; Lees, E. W.; Pant, L. M.; Zenyuk, I. V.; Bell, A. T.; Weber, A. Z. Continuum Modeling of Porous Electrodes for Electrochemical Synthesis. Chem. Rev. 2022, 122 (12), 11022-11084.

DOI: 10.1021/acs.chemrev.1c00901

Cunha, L. A.; Hait, D.; Kang, R.; Mao, Y.; Head-Gordon, M. Relativistic Orbital-Optimized Density Functional Theory for Accurate Core-Level Spectroscopy. J. Phys. Chem. Lett. 2022, 13 (15), 3438-3449.

DOI: 10.1021/acs.jpclett.2c00578

Luo, Y.; Chang, B. K.; Bernardi, M. Comparison of the Canonical Transformation and Energy Functional Formalisms for Ab Initio Calculations of Self-Localized Polarons. Phys. Rev. B 2022, 105 (15), 155132.

DOI: 10.1103/PhysRevB.105.155132

Lees, E. W.; Bui, J. C.; Song, D.; Weber, A. Z.; Berlinguette, C. P. Continuum Model to Define the Chemistry and Mass Transfer in a Bicarbonate Electrolyzer. ACS Energy Lett. 2022, 7 (2), 834–842.

DOI: 10.1021/acsenergylett.1c02522

Guevarra, D.; Zhou, L.; Richter, M. H.; Shinde, A.; Chen, D.; Gomes, C. P.; Gregoire, J. M. Materials Structure–Property Factorization for Identification of Synergistic Phase Interactions in Complex Solar Fuels Photoanodes. npj Comput Mater. 2022, 8 (1), 57.

DOI: 10.1038/s41524-022-00747-1

Yan, E.; Balgley, R.; Morla, M. B.; Kwon, S.; Musgrave, C. B.; Brunschwig, B. S.; Goddard, W. A.; Lewis,N. S. Experimental and Theoretical Comparison of Potential-dependent Methylation on Chemically Exfoliated WS2 and MoS2. ACS Appl. Mater. Interfaces 2022, 14 (7), 9744–9753.

DOI: 10.1021/acsami.1c20949

Mitchell, J. B.; Shen, M.; Twight, L.; Boettcher, S. W. Hydrogen-Evolution-Reaction Kinetics PH Dependence: Is It Covered? Chem Catalysis 2022, 2 (2), 236–238.

DOI: 10.1016/j.checat.2022.02.001

Heinselman, K. N.; Roberts, L. S.; Young, J. L.; Zakutayev, A. Reduced Synthesis Temperatures of SrNbO2N Perovskite Films for Photoelectrochemical Fuel Production. Journal of Materials Research 2022, 37 (2), 424–435.
DOI: 10.1557/s43578-021-00448-3

Lai, Y.; Watkins, N. B.; Muzzillo, C.; Richter, M.; Kan, K.; Zhou, L.; Haber, J. A.; Zakutayev, A.; Peters, J. C.; Agapie, T.; Gregoire, J. M. Molecular Coatings Improve the Selectivity and Durability of CO 2 Reduction Chalcogenide Photocathodes. ACS Energy Lett. 2022, 7 (3), 1195–1201.

DOI: 10.1021/acsenergylett.1c02762

Bui, J. C.; Kim, C.; King, A. J.; Romiluyi, O.; Kusoglu, A.; Weber, A. Z.; Bell, A. T. Engineering Catalyst– Electrolyte Microenvironments to Optimize the Activity and Selectivity for the Electrochemical Reduction of CO 2 on Cu and Ag. Acc. Chem. Res. 2022, 55 (4), 484–494.

DOI: 10.1021/acs.accounts.1c00650

Peng, H.-J.; Tang, M. T.; Halldin Stenlid, J.; Liu, X.; Abild-Pedersen, F. Trends in Oxygenate/ Hydrocarbon Selectivity for Electrochemical CO(2) Reduction to C2 Products. Nat Commun. 2022, 13 (1), 1399.

DOI: 10.1038/s41467-022-29140-8

Rao, K.K.; Lai, Y.; Zhou, L.; Haber, J.A.; Bajdich, M.; Gregoire, J.M., Overcoming Hurdles in Oxygen Evolution Catalyst Discovery via Co-Design. ACS Chemistry of Materials 2022.

DOI: 10.1021/acs.chemmater.1c04120

Fenwick, A.; Welch, A.J.; Li, Xueqian; Sullivan, I.; DuChene, J.S.; Xiang, C.; Atwater, H.A, Probing the Catalytically Active Region in a Nanoporous Gold Gas Diffusion Electrode for Highly Selective Carbon Dioxide Reduction. ACS Energy Letters 2022.

DOI: 10.1021/acsenergylett.1c02267

Zhang, X.; Goddard, W.A.; et al. Au-activated N motifs in Non-coherent Cupric Porphyrin Metal Organic Frameworks for Promoting and Stabilizing Ethylene Production. Nature Comm. 2022 13, 63.

DOI: 10.1038/s41467-021-27768-6

Rahmanian, F.; Flowers, J.; Guevarra, D.; Richter, M.; Fichtner, M.; Gregoire, J.; Stein, H. S. Enabling Modular Autonomous Feedback-Loops in Materials Science through Hierarchical Experimental Laboratory Automation and Orchestration. Adv. Mater. Interfaces 2022 2101987.

DOI: 10.1002/admi.202101987

2021

Neppl, S.; Mahl, J.; Roth, F.; Mercurio, G.; Zeng, G.; Toma, F.M.; Huse, N.; Feulner, P.; Gessner, O., Nanoscale Confinement of Photo-Injected Electrons at Hybrid Interfaces. J. Phys. Chem. Lett. 2021 12, 49, 11951–11959.

DOI: 10.1021/acs.jpclett.1c02648

Knecht, T.A.; Boettcher, S.W.; Hutchison, J.E., Electrochemistry-Induced Restructuring of Tin-Doped Indium Oxide Nanocrystal Films of Relevance to CO2 Reduction. J. Electrochem. Soc. 2021 168, 126521.

DOI: 10.1149/1945-7111/ac40ca

Sullivan, I.; Goryachev, A.; Digdaya, I.A.; Li, X.; Atwater, H.A.; Vermaas, D.A.; Xiang, C. Coupling electrochemical CO2conversion with CO2 capture. Nat Catal. 2021 4, 952–958.

DOI: 10.1038/s41929-021-00699-7

Liu, G.; Zheng, F.; Li, J.; Zeng, Z.; Ye, Y.; Karsin, D.M.; Yano, J.; Crumlin, E.J.; Ager, J.W.; Wang, L.-W.; Toma, F. Investigation and mitigation of degradation mechanisms in Cu2O photoelectrodes for CO2 reduction to ethylene. Nat Energy 6, 1124–1132 (2021).

DOI: 10.1038/s41560-021-00927-1

Alfarano, S.R et al, Stripping away ion hydration shells in electrical double layer formation: water networks matter. Proc. Nat. Acad. Sci USA 2021 118, e2108568118.

DOI: 10.1073/pnas.2108568118

Song, J.; Kwon, S.; Hossain, M.D.; Chen, S.; Li, Z.; Goddard, W.A. Reaction Mechanism and Strategy for Optimizing the Hydrogen Evolution Reaction on Single-Layer 1T′ WSe2 and WTe2 Based on Grand Canonical Potential Kinetics. ACS Appl. Mater. Interfaces 2021 13, 55611–55620.

DOI: 10.1021/acsami.1c14234

Kaiser, W.; Carignano, M.; Alothman, A.A.; Mosconi, E.; Kachmar, A.; Goddard, W.A.; De Angelis, F., First-Principles Molecular Dynamics in Metal-Halide Perovskites: Contrasting Generalized Gradient Approximation and Hybrid Functionals. J. Phys. Chem. Lett. 2021 12, 11886−11893.

DOI: 10.1021/acs.jpclett.1c03428

Kong, C. J.; Warren, E. L.; Greenaway, A. L.; Prabhakar, R. R.; Tamboli, A. C.; Ager, J. W., Design Principles of Tandem Cascade Photoelectrochemical Devices. Sustainable Energy Fuels 2021 5, 6361-6371.

DOI: 10.1039/D1SE01322J

Tang, M.T.; Peng, H.-J.; Stenlid, J.H.; Abild-Pedersen, F., Exploring trends on coupling mechanisms towards C3 product formation in CO2R. J. Phys. Chem. C 2021 125, 26437−26447.

DOI: doi.org/10.1021/acs.jpcc.1c07553

Palfey, W.R.; Rossman, G.R.; Goddard, W.A., Structure, Energetics, and Spectra for the Oxygen Vacancy in Rutile: Prominence of the Ti–Hₒ–Ti Bond. J. Phys. Chem. Lett. 2021 12, 10175–10181.

DOI: 10.1021/acs.jpclett.1c02850

Bui, J. C., Corpus, K. R. M., Bell, A. T., & Weber, A. Z, On the nature of water dissociation in bipolar membranes. J. Phys. Chem. C 2021, 125, 45, 24974-24987.

DOI: 10.1021/acs.jpcc.1c08276

Liu, H.; Klein, I.M.; Michelsen, J.M.; Cushing, S.K., Element-specific electronic and structural dynamics using transient XUV and soft X-ray spectroscopy. Chem. 2021

DOI: 10.1016/j.chempr.2021.09.005

Kim, C.; Bui, J.C.; Luo, X.; Cooper, J.K.; Kusoglu, A.; Weber, A.Z.; Bell, A.T., Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bi-layer ionomer coatings. Nature Energy 2021.

DOI: 10.1038/s41560-021-00920-8

Lai, Y.; Watkins, N.; Rosas-Hernández, A.; Thevenon, A.; Heim, G.; Wu, Y.; Zhou, L.; Peters, J.C.; Gregoire, J.; Agapie, T. Breaking Scaling Relationships in CO2 Reduction on Copper Alloys with Organic Additives. ACS Cent. Science 2021.

DOI: 10.1021/acscentsci.1c00860

Li, M.; Zhang, B.; Cheng, T.; Yo, S.; Louisia, S.; Chen, C.; Chen, S.; Cestellos-Blanco, S.; Goddard, W.A.; Yang, P., Sulfur-doped graphene anchoring of ultrafine Au25 nanoclusters for electrocatalysis. Nano Research 2021.

DOI: 10.1007/s12274-021-3561-2

Cheng, W.-H.; de la Calle, A.; Atwater, H.A.; Stechel, E.B.; Xiang, C., Hydrogen from sunlight and water: a side-by-side comparison between photoelectrochemical and solar thermochemical water-splitting. ACS Energy Lett. 2021, 6, 9, 3096-3113.

DOI: 10.1021/acsenergylett.1c00758

Richter, M.H.; … ; Gregoire, J.M, Band Edge Energy Tuning through Electronic Character Hybridization in Ternary Metal Vanadates. Chem. Mater. 2021.

DOI: 10.1021/acs.chemmater.1c01415

Kwon, S.; Kim, Y.-G.; Baricuatro, J.H.; Goddard, W.A., Dramatic Change in the Step Edges of the Cu(100) Electrocatalyst upon Exposure to CO: Operando Observations by Electrochemical STM and Explanation Using Quantum Mechanical Calculations. ACS Catal. 2021 11, 12068-112074;

DOI: 10.1021/acscatal.1c02844

Cooper.gif

Zhang, Z.; Liu, B.; Quinteros, F.; Zhai, X.; Wang, Q.; Han, W.; Xie, E.; Reyes-Lillo, S.E.; Cooper, J.K., Understanding the Role of Oxygen and Hydrogen Defects in Modulating the Optoelectronic Properties of P-Type Metal Oxide Semiconductors. Chemistry of Materials 2021.

DOI: 10.1021/acs.chemmater.1c02444

bernardi.jpg

Maliyov, I.; Park, J.; Bernardi, M., Ab initio electron dynamics in high electric fields: Accurate prediction of velocity-field curves. Phys. Rev. B 2021, 104, L100303.

DOI: 10.1103/PhysRevB.104.L100303

CX_HAA.jpg

Welch, A.J.; Fenwick, A.Q.; Bohme, A.; Chen, H.-Y.; Sullivan, I.; Li, X.; DuChene, J.S.; Xiang, C.; Atwater, H.A., Operando Local pH Measurement within Gas Diffusion Electrodes Performing Electrochemical Carbon Dioxide Reduction. J Phys. Chem. C 2021.

DOI: 10.1021/acs.jpcc.1c06265

Abild-Pedersen.jpg

Gauthier, J.A.; Stenlid, J.H.; Abild-Pedersen, F.; Head-Gordon, M.; Bell, A.T., The Role of Roughening to Enhance Selectivity to C2+Products during CO2 Electroreduction on Copper. Acs Energy Lett. 2021, 6, 3252-3260.

DOI: 10.1021/acsenergylett.1c01485

Persson Group.jpg

Andriuc, O.; Siron, M.; Montoya, J.H.; Horton, M.; and Persson, K.A., Automated Adsorption Workflow for Semiconductor Surfaces and the Application to Zinc Telluride. J. Chem. Inf. Model. 2021, 61, 8, 3908–3916.

DOI: 10.1021/acs.jcim.1c00340

publications 2.png

Yang, H.; Negreiros, F.R.; Sun, Q.; Xie, M.; Sementa, L,; Stener, M.; Ye, Y.; Fortunelli, A.; Goddard, W.A.; Cheng, T., Predictions of chemical shifts for reactive intermediates in CO­2 reduction under operando conditions. Applied Materials and Interfaces 2021, 13, 31554-31560.

DOI: 10.1021/acsami.1c02909

Picture1.jpg

Musgrave III, C. B.; Morozov, S,.; Schinski, W.L.; Goddard, W.A., Reduction of N₂ to Ammonia by Phosphate Molten Salt and Li Electrode: Proof of Concept Using Quantum Mechanics. J. Phys. Chem. Lett. 2021, 12, 6, 1696–1701.

DOI: 10.1021/acs.jpclett.0c03467

Picture2.jpg

Lin, M.; Digdaya, I.; Xiang, C., Modeling the electrochemical behavior and interfacial junction profiles of bipolar membranes at solar flux relevant operating current densities. Sustainable Energy Fuels 2021 5, 2149-2158.

DOI: 10.1039/D1SE00201E

Picture3.jpg

Ye, Y.; Su, H.; Lee, K.-J.; Valero-Vidal, C.; Blum, M.; Yano, J.; Crumlin, E. J., Carbon Dioxide adsorption and activation on Gallium Phosphide surface monitored by ambient pressure X-ray photoelectron spectroscopy. J. Phys. D: Appl. Phys. 2021 54, 234002.

DOI: 10.1088/1361-6463/abec0a

Picture4.jpg

Baricuatro, J.; Kwon, S.; Kim, Y.-G.; Cummins, K.; Naserifar, S.; Goddard, W. A., Operando electrochemical spectroscopy for CO on Cu(100) at pH 1 to 13: Validation of Grand Canonical Potential predictions. ACS Catalysis 2021, 11 (5) 3173-3181.

DOI: 10.1021/acscatal.0c05564

Picture0.jpg

Hait, D.; Liang, Y.H.; Head-Gordon, M., Too big, too small or just right? A benchmark assessment of density functional theory for predicting the spatial extent of the electron density of small chemical systems. J. Chem. Phys. 2021 154, 074109.

DOI: 10.1063/5.0038694

Picture5.png

Welch, A. J.; Digdaya, I. A.; Kent, R.; Ghougassian, P.; Atwater, H.A.; Xiang, C., Comparative Technoeconomic Analysis of Renewable Generation of Methane Using Sunlight, Water, and Carbon Dioxide. ACS Energy Letters 2021 6 (4), 1540-1549.

DOI: 10.1021/acsenergylett.1c00174

Picture6.jpg

Naserifar, S.; Chen, Y.; Kwon, S.; Xiao, H.; Goddard, W.A, Artificial Intelligence and QM/MM with a Polarizable Reactive Force Field for Next- Generation Electrocatalysts. Matter 2021, 4, 195–216.

DOI: 10.1016/j.matt.2020.11.010

Picture7.jpg

Dey, A; Houle, F.A.; Lubner, C.E.; Sevilla, M.; Shaw, W.J., Introduction to (photo)electrocatalysis for renewable energy. (Editorial) Chem. Commun. 2021, 57, 1540-1542.

DOI: 10.1039/D0CC90530E

Picture5.jpg

Peng, H.; Tang, M.T.; Liu, X.; Lamoureaux, P.S.; Bajdich, M; Abild-Pedersen, F, The role of atomic carbon in directing electrochemical CO₂ reduction to multi carbon products. Energy Environ. Sci. 2021, 14, 473-482.

DOI: 10.1039/D0EE02826F

Picture8.jpg

Sharifian, R.; Wagterveld, R.M.; Digdaya, A.; Xiang, C.; Vermaas, D.A., Electrochemical carbon dioxide capture to close the carbon cycle. (Review Article) Energy Environ. Sci., 2021 14, 781-814.

DOI: 10.1039/D0EE03382K

Picture9.jpg

Wang, L.; … ; Gregoire, J.; Abild-Pedersen, F.;  Jaramillo, T.F.; Hahn, C., Bimetallic effects on Zn-Cu electrocatalysts enhance activity and selectivity for the conversion of CO₂ to CO. Chem Catalysis 2021.

DOI10.1016/j.checat.2021.05.006

Picture10.jpg

Li, R.; Cheng, W.H.; Richter, M.H.; DuChene, J.S.; Tian, W.; Li, C.; Atwater, H.A., Unassisted Highly Selective Gas-Phase CO₂ Reduction with a Plasmonic Au/p-GaN Photocatalyst Using H₂O as an Electron Donor. ACS Energy Letters, 2021 6, 1849-1856.

DOI: 10.1021/acsenergylett.1c00392

Picture11.jpg

Johnson, S.I.; Blakemore, J.D.; Brunschwig, B. S.; Lewis, N. S.; Gray, H. B.; Goddard, W. A., III; Persson, P., Design of robust 2,2′-bipyridine ligand linkers for the stable immobilization of molecular catalysts on silicon(111) surfaces. Phys. Chem. Chem. Phys., 2021 23, 9921-9929.

DOI: 10.1039/D1CP00545F

Picture12.jpg

Hait, D.; Head-Gordon, M., Orbital Optimized Density Functional Theory for Electronic Excited States. J. Phys. Chem. Lett. 2021 12, 4517−4529.

DOI: 10.1021/acs.jpclett.1c00744

Picture13.png

Liu, G.; Lee, M.:Kwon, S.; Zeng, G.; Eichhorn, J.; Buckley, A.K.; Tpste, F.D.; Goddard, W.A.; Toma, F.M., CO₂ reduction on pure Cu produces only H₂ after subsurface O is depleted: Theory and experiment. Proceedings of the National Academy of Sciences 2021 118 e2012649118.

DOI: 10.1073/pnas.2012649118

Picture14.jpg

Nesbitt, N.T.; Smith, W.A., Water and solute activities regulate CO₂ reduction in gas diffusion electrodes. Journal of Physical Chemistry C 2021 168, 044505.

DOI: 10.1021/acs.jpcc.1c01923

 

2020

ja0c10017_0004.gif

Lee, S.H.; Lin, J.; Farmand, M.; Landers, A.T.; Feaster, J.T.; Beeman, J.; Ye, Y.; Yano, J.; Mehta, A; Davis, R.; Jaramillo, T.F.; Hahn, C.; Drisdell, W, Oxidation State and Surface Reconstruction of Cu under CO₂ Reduction Conditions from in-situ X-ray Characterization. J. Am. Chem. Soc. 2020.

DOI: 10.1021/jacs.0c10017

nanophotonics.png

Atwater, H.A., Seeing the light in energy use. (Perspective) Nanophotonics 2020, 10 (1), 115–116, eISSN 2192-8614.

DOI: 10.1515/nanoph-2020-0381