Publications
2024
Agbo, P. Rate-potential decoupling: a biophysical perspective of electrocatalysis. Journal of Physics D: Applied Physics. 2024, 57 (46), 462001.
Lucas, E.; Bui, J. C.; Stovall, T. N.; Hwang, M.; et al. Asymmetric Bipolar Membrane for High Current Density Electrodialysis Operation with Exceptional Stability. ACS Energy Letters. 2024, 9 (11), 5596-5605.
Yap, K. M. K.; Lee, S. A.; Kistler, T. A.; Collins, D. K.; et al. Addressing challenges for operating electrochemical solar fuels technologies under variable and diurnal conditions. Frontiers in Energy Research. 2024, 12, 1483914.
Soto-Montero, T.; Kralj, S.; Azmi, R.; Reus, M. A.; et al. Single-source pulsed laser-deposited perovskite solar cells with enhanced performance via bulk and 2D passivation. Joule. 2024, 8, 1-14.
Tagliabue, G.; Atwater, H. A.; Polman, A.; Cortés, E. Photonic solutions help fight climate crisis. Nature Photonics. 2024, 18 (9), 879-882.
Hicks, M. H.; Nie, W.; Boehme, A. E.; Atwater, H. A.; Agapie, T.; Peters, J. C. Electrochemical CO2 Reduction in Acidic Electrolytes: Spectroscopic Evidence for Local pH Gradients. Journal of the American Chemical Society. 2024, 146 (36), 25282–25289.
Liu, A.g; Musgrave, C. B.; Li, X.; Goddard, W. A.; Liu, Y. Non-aqueous alkoxide-mediated electrochemical carbon capture. Nature Energy. 2024, 9, 1415–1426.
Yap, K. M. K.; Aitbekova, A.; Salazar, M.; Kistler, T. A..; et al. CO2 Conversion to Butene via a Tandem Photovoltaic–Electrochemical/Photothermocatalytic Process: A Co-design Approach to Coupled Microenvironments. ACS Energy Letters. 2024, 9 (9), 4369–4377.
Hamilton, S. T.; Kelly, M.; Smith, W. A.; Park, A. A. Electrolyte–Electrocatalyst Interfacial Effects of Polymeric Materials for Tandem CO2 Capture and Conversion Elucidated Using In Situ Electrochemical AFM. ACS Applied Materials & Interfaces. 2024, 16 (32), 42021–42033.
Kim, J.; Lin, J.; Kim, J.; Roh, I.; Lee, S.; Yang, P. A red-light-powered silicon nanowire biophotochemical diode for simultaneous CO2 reduction and glycerol valorization. Nature Catalysis. 2024, 7, 977-986.
Zoric, M. R.; Basera, P.; Palmer, L. D.; Aitbekova, A.; et al. Oxidizing Role of Cu Cocatalysts in Unassisted Photocatalytic CO2 Reduction Using p-GaN/Al2O3/Au/Cu Heterostructures. ACS Nano. 2024, 18 (30), 19538–19548.
Liu, L.; Xu, Q.; Dos Anjos Cunha, L.; Xin, H.; Head-Gordon, M.; Qian, J. Real-Space Pseudopotential Method for the Calculation of Third-Row Elements X-ray Photoelectron Spectroscopic Signatures. Journal of Chemical Theory and Computation. 2024, 20 (14), 6134-6143.
King, A. J.; Weber, A. Z.; Bell, A. T. Understanding Photovoltage Enhancement in Metal–Insulator Semiconductor Photoelectrodes with Metal Nanoparticles. ACS Applied Materials & Interfaces. 2024, 16 (28), 36380–36391.
Kaufman, A. J.; Nielander, A. C.; Meyer, G. J.; Maldonado, S.; Ardo, S.; Boettcher, S. W. Absolute band-edge energies are over-emphasized in the design of photoelectrochemical materials. Nature Catalysis. 2024, 7 (6), 615-623.
Zhang, Q.; Musgrave, C. B.; Song, Y.; Su, J.; et al. A covalent molecular design enabling efficient CO2 reduction in strong acids. Nature Synthesis. 2024, 3, 1231–1242.
Maliyov, I.; Yin, J.; Yao, J.; Yang, C.; Bernardi, M. Dynamic mode decomposition of nonequilibrium electron-phonon dynamics: accelerating the first-principles real-time Boltzmann equation. npj Computational Materials. 2024, 10 (1), 123.
Heim, G. P.; Hirahara, M.; Dev, V. M.; Agapie, T. Synthesis and electronic properties of nitrogen-rich nanographene. Chemical Communications. 2024, 60 (57), 7343-7346.
Huang, Z.; Cheng, T.; Shah, A. H.; Zhong, G.; et al. Edge sites dominate the hydrogen evolution reaction on platinum nanocatalysts. Nature Catalysis. 2024, 7, 678-688.
Cherrette, Vivien L.; Chou, Kai-Chun; Zeitz, David; Guarino-Hotz, Melissa; Khvichia, Mariam; Barnett, Jeremey; Win, Allison; Babbe, Finn; Zhang, Jin Z. Ultrafast Exciton Dynamics of CH3NH3PbBr3 Perovskite Nanoclusters. The Journal of Physical Chemistry Letters. 2024, 15 (19), 5177-5182.
Whittaker, T. N.; Fishler, Y.; Clary, J. M.; Brimley, P.; Holewinski, A.; Musgrave, C. B.; Farberow, C. A.; Smith, W. A.; Vigil-Fowler, D. Insights into Electrochemical CO2 Reduction on Metallic and Oxidized Tin Using Grand-Canonical DFT and In Situ ATR-SEIRA Spectroscopy. .2024, 14 (11), 8353-8365.
Collins, D. K.; Schichtl, Z. G.; Nesbitt, N. T.; Greenaway, A. L.; Mihailetchi, V. D.; Tune, D. l.; Warren, E. L. Utilizing three-terminal, interdigitated back contact Si solar cells as a platform to study the durability of photoelectrodes for solar fuel production. Energy & Environmental Science. 2024, 17 (10), 3329-3337.
Kwon, S.; Stoerzinger, K. A.; Rao, R.; Qiao, L.; Goddard, W. A.; Shao-Horn, Y.Facet-Dependent Oxygen Evolution Reaction Activity of IrO2 from Quantum Mechanics and Experiments. Journal of the American Chemical Society. 2024, 146 (17), 11719-11725.
Jones, R. J. R.; Lai, Y.; Guevarra, D.; Kan, K.; Haber, J. A.; Gregoire, J. M. Accelerated screening of gas diffusion electrodes for carbon dioxide reduction. Digital Discovery. 2024, 3 (6), 1144-1149.
Kistler, T. A.; Prabhakar, R. R.; Agbo, P. A recirculation system for concentrating CO2 electrolyzer products. Sustainable Energy & Fuels. 2024, 8 (10), 2292-2298.
Heim, G. P.; Bruening, M. A.; Musgrave, C. B.; Goddard, W. A.; Peters, J. C.; Agapie, T. Potassium ion modulation of the Cu electrode-electrolyte interface with ionomers enhances CO2 reduction to C2+ products. Joule. 2024.
Fishler, Y.; Leick, N.; Teeter, G.; Holewinski, A.; Smith, W. A. Layered Sn–Au Thin Films for Increased Electrochemical ATR-SEIRAS Enhancement. ACS Applied Materials & Interfaces. 2024, 16 (15), 19780-19791.
Chan, T.; Kong, C. J.; King, A. J.; Babbe, F.; Prabhakar, R. R.; Kubiak, C. P.; Ager, J. W. Role of Mass Transport in Electrochemical CO2 Reduction to Methanol Using Immobilized Cobalt Phthalocyanine. ACS Applied Energy Materials. 2024, 7 (8), 3091–3098.
Ke, S.; Mangum, J. S.; Zakutayev, A.; Greenaway, A. L.; Neaton, J. B. First-Principles Studies of the Electronic and Optical Properties of Zinc Titanium Nitride: The Role of Cation Disorder. Chemistry of Materials. 2024, 36 (7), 3164-3176.
Kim, Y.; Mendes, J. L.; Michelsen, J. M.; Shin, H. J.; Lee, N.; Choi, Y. J.; Cushing, S. K. Coherent charge hopping suppresses photoexcited small polarons in ErFeO3 by antiadiabatic formation mechanism. Science Advances. 2024, 10 (12).
Palmer, L. D.; Lee, W.; Dong, C.; Liu, R.; Wu, N.; Cushing, S. K. Determining Quasi-Equilibrium Electron and Hole Distributions of Plasmonic Photocatalysts Using Photomodulated X-ray Absorption Spectroscopy. ACS Nano. 2024, 18 (13), 9344-9353.
Choi, C.; Kwon, S.; Gao, Y.; Cheon, S.; Li, J.; Menges, F.; Goddard, W. A.; Wang, H. CO2-Promoted Electrocatalytic Reduction of Chlorinated Hydrocarbons. Journal of the American Chemical Society. 2024, 146 (12), 8486–8491.
Watkins, N. B.; Lai, Y.; Schiffer, Z. J.; Canestraight, V. M.; Atwater, H. A.; Agapie, T.; Peters, J. C.; Gregoire, J. M. Electrode Surface Heating with Organic Films Improves CO2 Reduction Kinetics on Copper. ACS Energy Letters. 2024, 9, (4), 1440-1445.
Chan, T.; Zoric, M. R.; Shandilya, A.; Loeb, C. K.; Barrett, J. A.; Cordones, A. A.; Kubiak, C. P. Simple Preparation and Characterization of Hybrid Cobalt Phthalocyanine on Multiwalled Carbon Nanotube Electrodes. ACS Applied Energy Materials. 2024, 7 (6), 2225-2233.
Pada Sarker, H.; Abild‐Pedersen, F.; Bajdich, M. Prediction of Feasibility of Polaronic OER on (110) Surface of Rutile TiO2. ChemPhysChem. 2024.
DOI: 10.1002/cphc.202400060
Yap, K. M. K.; Wei, W. J.; Rodríguez Pabón, M.; King, A. J.; Bui, J. C.; Wei, L.; Lee, S.; Weber, A. Z.; Bell, A. T.; Nielander, A. C.; Jaramillo, T. F. Modeling diurnal and annual ethylene generation from solar-driven electrochemical CO2 reduction devices. Energy & Environmental Science. 2024, 17 (7), 2453-2467.
Kang, R.; Zhao, Y.; Hait, D.; Gauthier, J. A.; Kempler, P. A.; Thurman, K. A.; Boettcher, S. W.; Head-Gordon, M. Understanding ion-transfer reactions in silver electrodissolution and electrodeposition from first-principles calculations and experiments. Chemical Science. 2024, 15 (13), 4996-5008.
Goddard, W. A.; Musgrave, C. B. Electrochemical Nitrate Reduction Catalyzed by Two-Dimensional Transition Metal Borides. The Journal of Physical Chemistry Letters. 2024, 15 (7), 1899-1907.
Zhao, Y.; Hu, X.; Stucky, G. D.; Boettcher, S. W. Thermodynamic, Kinetic, and Transport Contributions to Hydrogen Evolution Activity and Electrolyte-Stability Windows for Water-in-Salt Electrolytes. Journal of the American Chemical Society. 2024, 146 (5), 3438-3448.
Cho, J.; Medina, A.; Saih, I.; Il Choi, J.; Drexler, M.; Goddard, W. A.; Alamgir, F. M.; Jang, Seung S. 2D Metal/Graphene and 2D Metal/Graphene/Metal Systems for Electrocatalytic Conversion of CO2 to Formic Acid. Angewandte Chemie International Edition. 2024, 63 (12).
DeLuca, E. E.; Chan, T.; Taylor, J. M.; Lee, B.; Prabhakar, R. R.; Kubiak, C. P. Steric Effects on CO2 Reduction with Substituted Mn(bpy)(CO)3X-Type Catalysts on Multiwalled Carbon Nanotubes Reveal Critical Mechanistic Details. ACS Catalysis. 2024, 14 (3), 2071-2083.
Agbo, P. An Expansion of Polarization Control Using Semiconductor–Liquid Junctions. The Journal of Physical Chemistry Letters. 2024, 15 (4), 1135-1142.
Mangum, J. S.; Ke, S.; Gish, M.a K.; Raulerson, E. K.; Perkins, C. L.; Neaton, J. B.; Zakutayev, A.; Greenaway, A. L. Sn-assisted heteroepitaxy improves ZnTiN2 photoabsorbers. Journal of Materials Chemistry A. 2024, 12 (8), 4544-4554.
Aitbekova, A.; Watkins, N.; Richter, M. H.; Jahelka, P.; Peters, J. C.; Agapie, T.; Atwater, H. A. Molecular Additives Improve the Selectivity of CO2 Photoelectrochemical Reduction over Gold Nanoparticles on Gallium Nitride. Nano Letters. 2024, 24 (4), 1090-1095.
Yang, M. Y.; O’Mari, O.; Goddard, W. A.; Vullev, V. I. How Permanent Are the Permanent Macrodipoles of Anthranilamide Bioinspired Molecular Electrets? Journal of the American Chemical Society. 2024.
Bui, J. C.; Lees, E. W.; Marin, D. H.; Stovall, T. N.; Chen, L.; Kusoglu, A.; Nielander, A. C.; Jaramillo, T. F.; Boettcher, S. W.; Bell, A. T.; Weber, A. Z. Multi-scale physics of bipolar membranes in electrochemical processes. Nature Chemical Engineering. 2024, 1 (1), 45-60.
2023
Musgrave, C. B.; Li, Y.; Luo, Z.; Goddard, W. A. Dual atom catalysts for rapid electrochemical reduction of CO to ethylene. Nano Energy. 2023, 118, 108966.
Wei, W. J.; King, A. J.; Bui, J. C.; Weber, A. Z.; Bell, A. T. Co-Design of Multijunction Photoelectrochemical Devices for Unassisted CO2 Reduction to Multicarbon Products. Journal of The Electrochemical Society. 2023, 170, 126502.
Atwater, H. A. Artificial photosynthesis: A pathway to solar fuels. Physics Today. 2023, 76 (12), 32-39.
Kan, K.; Guevarra, D.; Zhou, L.; Jones, R. J. R.; Lai, Y.; Richter, M.; Gregoire, J. M. Accelerated Characterization of Electrode‐Electrolyte Equilibration. ChemCatChem. 2023, e202301300.
Zhou, L.; Shinde, A.; Chang, M.; Bruce Van Dover, R.; Thompson, M. O.; Gregoire, J. M. High throughput identification of complex rutile alloys for the acidic oxygen evolution reaction. Journal of Materials Chemistry A. 2023, 11 (46), 25262-25267.
Woods-Robinson, R.l.; Persson, K. A.; Zakutayev, A. Stability and synthesis across barium tin sulfide material space. Journal of Materials Chemistry A. 2023, 11 (45), 24948-24958.
Lee, D. U.; Joensen, B.; Jenny, J.; Ehlinger, V. M.; Lee, S.; Abiose, K.; Xu, Y.; Sarkar, A.; Lin, T. Y.; Hahn, C.; Jaramillo, T. F. Controlling Mass Transport in Direct Carbon Dioxide Zero-Gap Electrolyzers via Cell Compression. ACS Sustainable Chemistry & Engineering. 2023, 11 (46), 16661-16668.
Liang, J.; Ma, K.; Zhao, X.; Lu, G.; et al. Elucidating the Mechanism of Large Phosphate Molecule Intercalation Through Graphene-Substrate Heterointerfaces. ACS Applied Materials & Interfaces. 2023, 15 (40), 47649-47660.
Osella, S.; Goddard Iii, W. A.CO2 Reduction to Methane and Ethylene on a Single-Atom Catalyst: A Grand Canonical Quantum Mechanics Study. Journal of the American Chemical Society. 2023, 145 (39), 21319-21329.
Guevarra, D.; Kan, K.; Lai, Y.; Jones, R. J. R.; Zhou, L.; Donnelly, P.; Richter, M.; Stein, H. S.; Gregoire, J. M. Orchestrating nimble experiments across interconnected labs. Digital Discovery. 2023, 2 (6), 1806-1812.
Cherrette, V. L.; Babbe, F.; Cooper, J. K.; Zhang, J. Z. Octahedral Distortions Generate a Thermally Activated Phonon-Assisted Radiative Recombination Pathway in Cubic CsPbBr3 Perovskite Quantum Dots. The Journal of Physical Chemistry Letters. 2023, 14 (39), 8717-8725.
Zhou, B.; Ma, Y.; Ou, P.; Ye, Z.; et al. Light-driven synthesis of C2H6 from CO2 and H2O on a bimetallic AuIr composite supported on InGaN nanowires. Nature Catalysis. 2023.
Bui, J. C.; Lucas, É.; Lees, E. W.; Liu, A. K.; Atwater, H. A.; Xiang, C.; Bell, A. T.; Weber, A. Z. Analysis of bipolar membranes for electrochemical CO2 capture from air and oceanwater. Energy & Environmental Science. 2023, 16 (11), 5076-5095.
Sun, Q.; Oliveira, N. J.; Kwon, S.; Tyukhtenko, S.; et al. Understanding hydrogen electrocatalysis by probing the hydrogen-bond network of water at the electrified Pt–solution interface. Nature Energy. 2023, 8 (8), 859-869.
Su, J.; Musgrave, C. B.; Song, Y.; Huang, L.; Liu, Y.; Li, G.; Xin, Y.; Xiong, P.; Li, Molly M.; Wu, H.; Zhu, M.; Chen, H. M.; Zhang, J.; Shen, H.; Tang, Ben Z.; Robert, M.; Goddard, W. A.; Ye, R. Strain enhances the activity of molecular electrocatalysts via carbon nanotube supports. Nature Catalysis. 2023.
Bonchio, M.; Bonin, J.; Ishitani, O.; Lu, T.; Morikawa, T.; Morris, A. J.; Reisner, E.; Sarkar, D.; Toma, F. M.; Robert, M. Best practices for experiments and reporting in photocatalytic CO2 reduction. Nature Catalysis. 2023, 6 (8), 657-665.
Rome, G. A.; Intia, F.; Klein, T. R.; Schichtl, Z. G.; Tamboli, A. C.; Warren, E. L.; Greenaway, A. L. Transparent Conductive Encapsulants for Photoelectrochemical Applications. ChemElectroChem. 2023.
Qiao, Y.; Kastlunger, G.; Davis, R. C.; Rodriguez, C. A. G.; Vishart, A.; Deng, W.; Xu, Q.; Li, S.; Benedek, P.; Chen, J.; Schröder, J.; Perryman, J.; Lee, D.; Jaramillo, T. F.; Chorkendorff, I.; Seger, B. Mechanistic Insights into Aldehyde Production from Electrochemical CO2 Reduction on CuAg Alloy via Operando X-ray Measurements. ACS Catalysis. 2023, 13 (14), 9379-9391.
Statt, M. J.; Rohr, B. A.; Brown, K.; Guevarra, D.; Hummelshøj, J.; Hung, L.; Anapolsky, A.; Gregoire, J. M.; Suram, S. K. ESAMP: event-sourced architecture for materials provenance management and application to accelerated materials discovery. Digital Discovery. 2023, 2 (4), 1078-1088.
Qiao, Yu; Kastlunger, Georg; Davis, Ryan C.; et al. Mechanistic Insights into Aldehyde Production from Electrochemical CO2 Reduction on CuAg Alloy via Operando X-ray Measurements. ACS Catalysis. 2023, 13 (14), 9379-9391.
Horio, M.; Sumi, T.; Bullock, J.; Hirata, Y.; et al. Detecting driving potentials at the buried SiO2 nanolayers in solar cells by chemical-selective nonlinear x-ray spectroscopy. Applied Physics Letters. 2023, 123 (3), 31602.
Xu, Y.; Zheng, M.; Musgrave, C. B.; Zhang, L.; Goddard, W. A.; Bukowski, B. C.; Liu, Y. Assessing the Kinetics of Quinone–CO2 Adduct Formation for Electrochemically Mediated Carbon Capture. ACS Sustainable Chem. Eng. 2023, 11 (30), 11333-11341.
Li, S.; Kwon, S.; Goddard, W. A.; Houle, F. A. A stochastic description of pH within nanoscopic water pools. Cell Reports Physical Science. 2023, 4 (6), 101458.
Yap, K. M. K.; Lee, S.; Steiner, M. A.; Avilés Acosta, J. E.; Kang, D.; Kim, D.; Warren, E. L.; Nielander, A. C.; Jaramillo, T. F. A framework for understanding efficient diurnal CO2 reduction using Si and GaAs photocathodes. Chem Catalysis. 2023, 3 (6), 100641.
Avilés Acosta, J. E.; Lin, J. C.; Un Lee, D.; Jaramillo, T. F.; Hahn, C. Electrochemical Flow Reactor Design Allows Tunable Mass Transport Conditions for Operando Surface Enhanced Infrared Absorption Spectroscopy. ChemCatChem. 2023.
Lin, J.; Roh, I.; Yang, P. Photochemical Diodes for Simultaneous Bias-Free Glycerol Valorization and Hydrogen Evolution. J. Am. Chem. Soc. 2023.
Soobrian, B.; King, A. J.; Bui, J. C.; Weber, A. Z.; Bell, A. T.; Houle, F. A. Toward a Diverse Next-Generation Energy Workforce: Teaching Artificial Photosynthesis and Electrochemistry in Elementary Schools through Active Learning. J. Chem. Educ. 2023.
Jung, H.; Kim, C.; Yoo, H.; You, J.; Kim, J. S.; Jamal, A.; Gereige, I.; Ager, J. W.; Jung, H. Continuous-flow reactor with superior production rate and stability for CO2 reduction using semiconductor photocatalysts. Energy Environ. Sci. 2023, 16 (7), 2869-2878.
Corpus, K. M.; Bui, J. C.; Limaye, A. M.; Pant, L. M.; Manthiram, K.; Weber, A. Z.; Bell, A. T. Coupling covariance matrix adaptation with continuum modeling for determination of kinetic parameters associated with electrochemical CO2 reduction. Joule. 2023.
Dolmanan, S. B.; Böhme, A.; Fan, Z.; King, A. J.; Fenwick, A. Q.; Handoko, A. D.; Leow, W. R.; Weber, A. Z.; Ma, X.; Khoo, E.; Atwater, H. A.; Lum, Y. Local microenvironment tuning induces switching between electrochemical CO2 reduction pathways. J. Mater. Chem. A. 2023, 11 (25), 13493-13501.
Kim, Chanyeon; King, Alex J.; Aloni, Shaul; Toma, Francesca M.; Weber, Adam Z.; Bell, Alexis T. Codesign of an integrated metal–insulator–semiconductor photocathode for photoelectrochemical reduction of CO2 to ethylene. Energy Environ. Sci. 2023.
Prabhakar, R. R.; Lemerle, R.; Barecka, M.; Kim, M.; Seo, S.; Dayi, E.N.; Dei Tos, I.; Ager, J. W. TaOx electron transport layers for CO2 reduction Si photocathodes. J. Mater. Chem. A. 2023.
King, A. J.; Weber, A. Z.; Bell, A. T. Theory and Simulation of Metal–Insulator–Semiconductor (MIS) Photoelectrodes. ACS Appl. Mater. Interfaces. 2023, 15 (19), 23024-23039.
Epstein, A. R.; Spotte-Smith, E. W. C.; Venetos, M. C.; Andriuc, O.; Persson, K. A. Assessing the Accuracy of Density Functional Approximations for Predicting Hydrolysis Reaction Kinetics. J. Chem. Theory Comput. 2023.
Zhang, H.; Cheng, D.; Xiang, C.; Lin, M. Tuning the Interfacial Electrical Field of Bipolar Membranes with Temperature and Electrolyte Concentration for Enhanced Water Dissociation. ACS Sustainable Chem. Eng. 2023, 11 (21), 8044–8054.
Houle, F. A.; Yano, J.; Ager, J. W. Hurry Up and Wait: Managing the Inherent Mismatches in Time Scales in Natural and Artificial Photosynthetic Systems. ACS Catalysis. 2023, 12 (11), 7139-7158.
Musgrave, C. B.; Olsen, K.; Liebov, N. S.; Groves, J. T.; Goddard, W. A.; Gunnoe, T. B. Partial Oxidation of Methane Enabled by Decatungstate Photocatalysis Coupled to Free Radical Chemistry. ACS Catalysis. 2023, 13 (9), 6382-6395.
Watkins, N. B.; Schiffer, Z. J.; Lai, Y.; Musgrave, C. B.; Atwater, H. A.; Goddard, W. A.; Agapie, T.; Peters, J. C.; Gregoire, J. M. Hydrodynamics Change Tafel Slopes in Electrochemical CO2 Reduction on Copper. ACS Energy Lett. 2023, 8, 2185-2192.
Statt, M. J.; Rohr, B. A.; Guevarra, D.; Suram, S. K.; Morrell, T. E.; Gregoire, J. M. The Materials Provenance Store. Scientific Data. 2023, 10 (1), 184.
Zhu, K.; Naserifar, S.; Goddard, W. A.; Su, H. Topology induced crossover between Langevin, subdiffusion, and Brownian diffusion regimes in supercooled water. Phys. Chem. Chem. Phys. 2023, 25 (15), 10353-10366.
Utterback, J. K.; King, A. J.; Belman-Wells, L.; Larson, D. M.; Hamerlynck, L. M.; Weber, A. Z.; Ginsberg, N. S. Operando Label-Free Optical Imaging of Solution-Phase Ion Transport and Electrochemistry. ACS Energy Lett. 2023, 8 (3), 1785-1792.
Jung, H.; Ager, J. W. A tipping point for solar production of hydrogen? Joule. 2023, 7 (3), 459-461.
Nie, W.; Heim, G. P.; Watkins, N. B.; Agapie, T.; Peters, J. C. Organic Additive-derived Films on Cu Electrodes Promote Electrochemical CO2 Reduction to C2+ Products Under Strongly Acidic Conditions. Angew Chem Int Ed. 2023, 62 (12).
Gregoire, J. M.; Zhou, L.; Haber, J. A. Combinatorial synthesis for AI-driven materials discovery. Nature Synthesis. 2023.
Liu, H.; Michelsen, J. M.; Mendes, J. L.; Klein, I. M.; Bauers, S. R.; Evans, J. M.; Zakutayev, A.; Cushing, S. K. Measuring Photoexcited Electron and Hole Dynamics in ZnTe and Modeling Excited State Core-Valence Effects in Transient Extreme Ultraviolet Reflection Spectroscopy. J. Phys. Chem. Lett. 2023, 14 (8), 2106-2111.
Kempler, Paul A.; Nielander, Adam C. Reliable reporting of Faradaic efficiencies for electrocatalysis research. Nature Communications. 2023, 14 (1), 1158.
Schiffer, Z. J.; Cushing, S. Reports From The Frontier-Heterogeneous Electrocatalysts for Sustainable Electrochemical Synthesis. Electrochem. Soc. Interface. 2023, 32 (1), 37-39.
Zoric, M. R.; Chan, T.; Musgrave, C. B.; Goddard, W. A.; Kubiak, C. P.; Cordones, A. A. In situ x-ray absorption investigations of a heterogenized molecular catalyst and its interaction with a carbon nanotube support. J. Chem. Phys. 2023, 158 (7), 74703.
Boehme, A.; Bui, J.; Fenwick, A. Q.; Bhide, R.; Feltenberger, C.; Welch, A. J.; King, A. J.; Weber, A. Z.; Bell, A. T.; Ardo, S.; Atwater, H. A. Direct Observation of the Local Microenvironment in Inhomogeneous CO2 Reduction Gas Diffusion Electrodes via Versatile pOH Imaging. Energy & Environmental Science. 2023, 4 (16), 1783-1795.
Tamtaji, M.; Cai, S.; Wu, W.; Liu, T.; et al. Single and dual metal atom catalysts for enhanced singlet oxygen generation and oxygen reduction reaction. J. Mater. Chem. A. 2023, 11 (12), 7513-7525.
Andrei, V.; Roh, I.; Yang, P. Nanowire photochemical diodes for artificial photosynthesis. Science Advances. 2023, 9 (6).
Hossain, M. D.; Liu, Z.; Liu, H.; et al. The kinetics and potential dependence of the hydrogen evolution reaction optimized for the basal-plane Te vacancy site of MoTe2. Chem Catalysis. 2023, 3 (1), 100489.
Sassenburg, M.; Kelly, M.; Subramanian, S.; Smith, W. A.; Burdyny, T. K. Zero-Gap Electrochemical CO2 Reduction Cells: Challenges and Operational Strategies for Prevention of Salt Precipitation. ACS Energy Lett. 2023, 8 (1), 321-331.
2022
Palfey, W. R.; Rossman, G. R.; Goddard, W. A. Behavior of Hydrogarnet‐Type Defects in Hydrous Stishovite at Various Temperatures and Pressures. JGR Solid Earth. 2022, 128 (2).
Kumar Rao, K.; Zhou, L.; Lai, Y.; Richter, M.; Li, X.; Lu, Y.; Yano, J.; Gregoire, J.; Bajdich, M. Resolving Atomistic Structure and Oxygen Evolution Activity in Nickel Antimonates. J. Mater. Chem. A. 2022.
Yang, R.X.; McCandler, C. A.; Andriuc, O.; Siron, M.; Woods-Robinson, R.; Horton, M. K.; Persson, K. A. Big Data in a Nano World: A Review on Computational, Data-Driven Design of Nanomaterials Structures, Properties, and Synthesis. ACS Nano. 2022, 16 (12), 19873-19891.
Chen, H.; Sangalli, D.; Bernardi, M. First-principles ultrafast exciton dynamics and time-domain spectroscopies: Dark-exciton mediated valley depolarization in monolayer WSe 2. Phys. Rev. Research. 2022, 4 (4), 43203.
Choi, C.; Wang, X.; Kwon, S.; et al. Efficient electrocatalytic valorization of chlorinated organic water pollutant to ethylene. Nat. Nanotechnol. 2022, 18, 160-167.
Follmer, A. H.; Luedecke, K. M.; Hadt, R. G. μ-Oxo Dimerization Effects on Ground- and Excited-State Properties of a Water-Soluble Iron Porphyrin CO2 Reduction Catalyst. Inorg. Chem. 2022, 61 (50), 20493-20500.
Zhou, L.; Peterson, E. A.; Richter, M. H.; Lai, Y.; Neaton, J. B.; Gregoire, J. M. Fe Substitutions Improve Spectral Response of Bi2WO6-Based Photoanodes. ACS Appl. Energy Mater. 2022, 5 (12), 15333–15344
Musgrave III, C. B.; Prokofjevs, A.; Goddard III, W. A. Phosphine Modulation for Enhanced CO2 Capture: Quantum Mechanics Predictions of New Materials. J. Phys. Chem. Lett. 2022, 13 (48), 11183-11190.
Watkins, N. B.; Wu, Y.; Nie, W.; Peters, J. C.; Agapie, T. In Situ Deposited Polyaromatic Layer Generates Robust Copper Catalyst for Selective Electrochemical CO2 Reduction at Variable pH. ACS Energy Lett. 2022, 8 (1), 189-195.
Zhou, L.; Wang, Y.; Kan, K.; Lucana, D. M.; Guevarra, D.; Lai, Y.; Gregoire, J. M. Surveying Metal Antimonate Photoanodes for Solar Fuel Generation. ACS Sustainable Chem. Eng. 2022, 10 (48), 15898–15908.
Peterson, E. A.; Debela, T. T.; Gomoro, G. M.; Neaton, J. B.; Asres, G. A. Electronic structure of strain-tunable Janus WSSe–ZnO heterostructures from first-principles. RSC Adv. 2022, 12 (48), 31303-31316.
Xu, D.; Sullivan, I.; Xiang, C.; Lin, M. Comparative Study on Electrochemical and Thermochemical Pathways for Carbonaceous Fuel Generation Using Sunlight and Air. ACS Sustainable Chem. Eng. 2022, 10 (42), 13945-13954.
Culman, T. H.; Woods-Robinson, R.; Mangum, J. S.; et al. Nitrogen stabilizes the wurtzite polymorph in ZnSe1−xTex thin films. J. Mater. Chem. C. 2022, 10 (42), 15806-15815.
Kong, C. J.; Prabhakar, R. R.; Ager, J. W. Electrochemical conversion of carbon dioxide to methyl formate with flue gas as a feedstock. Chem Catalysis. 2022, 2 (9), 2124-2126.
Schnepf, R. R.; Tellekamp, M. B.; Saenz, T.; et al. Epitaxial ZnGeP2 Thin Films on Si and GaP by Reactive Combinatorial Sputtering in Phosphine. Crystal Growth & Design. 2022, 22 (10), 6131–6139.
Hong, K.; Tan, S.; McDermott, M. J.; et al. Shape-Controlled NaTaO3 by Flux-Mediated Synthesis. Adv Funct Materials. 2022, 32 (46), 2206641.
Sun, Y.; Shin, H.; Wang, F.; et al. Highly Selective Electrocatalytic Oxidation of Amines to Nitriles Assisted by Water Oxidation on Metal-Doped α-Ni(OH)2. J. Am. Chem. Soc. 2022, 144 (33), 15185-15192.
King, A. J.; Bui, J. C.; Bell, A. T.; Weber, A. Z. Establishing the Role of Operating Potential and Mass Transfer in Multicarbon Product Generation for Photoelectrochemical CO2 Reduction Cells Using a Cu Catalyst. ACS Energy Lett. 2022, 7 (8), 2694-2700.
Lei, Y.; Li, Y.; Lu, C.; et al. Perovskite superlattices with efficient carrier dynamics. Nature. 2022, 608 (7922), 317-323.
Siron, M.; Andriuc, O.; Persson, K. A. Data-Driven Investigation of Tellurium-Containing Semiconductors for CO2 Reduction: Trends in Adsorption and Scaling Relations. J. Phys. Chem. C. 2022, 126 (31), 13224-13236.
Cheng, W.; Richter, M. H.; Müller, R.; et al. Integrated Solar-Driven Device with a Front Surface Semitransparent Catalysts for Unassisted CO2 Reduction. Advanced Energy Materials. A. 2022, 12 (36), 2201062.
Greenaway, A. L.; Ke, S.; Culman, T.; et al. Zinc Titanium Nitride Semiconductor toward Durable Photoelectrochemical Applications. J. Am. Chem. Soc. 2022, 144 (30), 13673–13687.
Zhou, L.; Peterson, E. A.; Rao, K. K.; et al. Addressing solar photochemistry durability with an amorphous nickel antimonate photoanode. Cell Reports Physical Science. 2022, 3 (7), 100959.
Zhou, L.; Guevarra, D.; Gregoire, J. M. High throughput discovery of enhanced visible photoactivity in Fe-Cr vanadate solar fuels photoanodes. J. Phys. Energy. 2022, 4 (4).
Klein, I. M.; Liu, H.; Nimlos, D.; Krotz, A.; Cushing, S. K. AbInitio Prediction of Excited-State and Polaron Effects in Transient XUV Measurements of α-Fe2O3. J. Am. Chem. Soc. 2022, 144 (28), 12834-12841.
Li, J.; Halldin Stenlid, J.; Tang, M. T.; Peng, H.; Abild-Pedersen, F. Screening binary alloys for electrochemical CO2 reduction towards multi-carbon products. J. Mater. Chem. A. 2022, 10 (30), 16171-16181.
Khan, I. S.; Ablekim, T.; McGott, D. L.; Good, B.; Perkins, C. L.; Zakutayev, A. Codesigning Alloy Compositions of CdSeyTe1−y Absorbers and MgxZn1−xO Contacts to Increase Solar Cell Efficiency. Solar RRL. 2022.
Hait, D.; Oosterbaan, K. J.; Carter-Fenk, K.; Head-Gordon, M. Computing x-ray absorption spectra from linear-response particles atop optimized holes. J. Chem. Phys. 2022, 156 (20), 201104.
Segev, G.; et al. The 2022 Solar Fuels Roadmap. J. Phys. D: Appl. Phys. 2022, 55, 323003.
Roh, I.; Yu, S.; Lin, C.; Louisia, S.; Cestellos-Blanco, S.; Yang, P. Photoelectrochemical CO2 Reduction toward Multicarbon Products with Silicon Nanowire Photocathodes Interfaced with Copper Nanoparticles. J. Am. Chem. Soc. 2022, 144 (18), 8002-8006.
He, M.; Chang, X.; Chao, T.; Li, C.; Goddard, W. A.; Cheng, M.; Xu, B.; Lu, Q. Selective Enhancement of Methane Formation in Electrochemical CO2 Reduction Enabled by a Raman-Inactive Oxygen-Containing Species on Cu. ACS Catal. 2022, 12 (10), 6036-6049.
Bui, J. C.; Lees, E. W.; Pant, L. M.; Zenyuk, I. V.; Bell, A. T.; Weber, A. Z. Continuum Modeling of Porous Electrodes for Electrochemical Synthesis. Chem. Rev. 2022, 122 (12), 11022-11084.
Cunha, L. A.; Hait, D.; Kang, R.; Mao, Y.; Head-Gordon, M. Relativistic Orbital-Optimized Density Functional Theory for Accurate Core-Level Spectroscopy. J. Phys. Chem. Lett. 2022, 13 (15), 3438-3449.
Luo, Y.; Chang, B. K.; Bernardi, M. Comparison of the Canonical Transformation and Energy Functional Formalisms for Ab Initio Calculations of Self-Localized Polarons. Phys. Rev. B 2022, 105 (15), 155132.
Lees, E. W.; Bui, J. C.; Song, D.; Weber, A. Z.; Berlinguette, C. P. Continuum Model to Define the Chemistry and Mass Transfer in a Bicarbonate Electrolyzer. ACS Energy Lett. 2022, 7 (2), 834–842.
Guevarra, D.; Zhou, L.; Richter, M. H.; Shinde, A.; Chen, D.; Gomes, C. P.; Gregoire, J. M. Materials Structure–Property Factorization for Identification of Synergistic Phase Interactions in Complex Solar Fuels Photoanodes. npj Comput Mater. 2022, 8 (1), 57.
Yan, E.; Balgley, R.; Morla, M. B.; Kwon, S.; Musgrave, C. B.; Brunschwig, B. S.; Goddard, W. A.; Lewis,N. S. Experimental and Theoretical Comparison of Potential-dependent Methylation on Chemically Exfoliated WS2 and MoS2. ACS Appl. Mater. Interfaces 2022, 14 (7), 9744–9753.
Mitchell, J. B.; Shen, M.; Twight, L.; Boettcher, S. W. Hydrogen-Evolution-Reaction Kinetics PH Dependence: Is It Covered? Chem Catalysis 2022, 2 (2), 236–238.
Heinselman, K. N.; Roberts, L. S.; Young, J. L.; Zakutayev, A. Reduced Synthesis Temperatures of SrNbO2N Perovskite Films for Photoelectrochemical Fuel Production. Journal of Materials Research 2022, 37 (2), 424–435.
DOI: 10.1557/s43578-021-00448-3
Lai, Y.; Watkins, N. B.; Muzzillo, C.; Richter, M.; Kan, K.; Zhou, L.; Haber, J. A.; Zakutayev, A.; Peters, J. C.; Agapie, T.; Gregoire, J. M. Molecular Coatings Improve the Selectivity and Durability of CO 2 Reduction Chalcogenide Photocathodes. ACS Energy Lett. 2022, 7 (3), 1195–1201.
Bui, J. C.; Kim, C.; King, A. J.; Romiluyi, O.; Kusoglu, A.; Weber, A. Z.; Bell, A. T. Engineering Catalyst– Electrolyte Microenvironments to Optimize the Activity and Selectivity for the Electrochemical Reduction of CO 2 on Cu and Ag. Acc. Chem. Res. 2022, 55 (4), 484–494.
DOI: 10.1021/acs.accounts.1c00650
Peng, H.-J.; Tang, M. T.; Halldin Stenlid, J.; Liu, X.; Abild-Pedersen, F. Trends in Oxygenate/ Hydrocarbon Selectivity for Electrochemical CO(2) Reduction to C2 Products. Nat Commun. 2022, 13 (1), 1399.
Rao, K.K.; Lai, Y.; Zhou, L.; Haber, J.A.; Bajdich, M.; Gregoire, J.M., Overcoming Hurdles in Oxygen Evolution Catalyst Discovery via Co-Design. ACS Chemistry of Materials 2022.
Fenwick, A.; Welch, A.J.; Li, Xueqian; Sullivan, I.; DuChene, J.S.; Xiang, C.; Atwater, H.A, Probing the Catalytically Active Region in a Nanoporous Gold Gas Diffusion Electrode for Highly Selective Carbon Dioxide Reduction. ACS Energy Letters 2022.
Zhang, X.; Goddard, W.A.; et al. Au-activated N motifs in Non-coherent Cupric Porphyrin Metal Organic Frameworks for Promoting and Stabilizing Ethylene Production. Nature Comm. 2022 13, 63.
Rahmanian, F.; Flowers, J.; Guevarra, D.; Richter, M.; Fichtner, M.; Gregoire, J.; Stein, H. S. Enabling Modular Autonomous Feedback-Loops in Materials Science through Hierarchical Experimental Laboratory Automation and Orchestration. Adv. Mater. Interfaces 2022 2101987.
2021
Neppl, S.; Mahl, J.; Roth, F.; Mercurio, G.; Zeng, G.; Toma, F.M.; Huse, N.; Feulner, P.; Gessner, O., Nanoscale Confinement of Photo-Injected Electrons at Hybrid Interfaces. J. Phys. Chem. Lett. 2021 12, 49, 11951–11959.
Knecht, T.A.; Boettcher, S.W.; Hutchison, J.E., Electrochemistry-Induced Restructuring of Tin-Doped Indium Oxide Nanocrystal Films of Relevance to CO2 Reduction. J. Electrochem. Soc. 2021 168, 126521.
Sullivan, I.; Goryachev, A.; Digdaya, I.A.; Li, X.; Atwater, H.A.; Vermaas, D.A.; Xiang, C. Coupling electrochemical CO2conversion with CO2 capture. Nat Catal. 2021 4, 952–958.
Liu, G.; Zheng, F.; Li, J.; Zeng, Z.; Ye, Y.; Karsin, D.M.; Yano, J.; Crumlin, E.J.; Ager, J.W.; Wang, L.-W.; Toma, F. Investigation and mitigation of degradation mechanisms in Cu2O photoelectrodes for CO2 reduction to ethylene. Nat Energy 6, 1124–1132 (2021).
Alfarano, S.R et al, Stripping away ion hydration shells in electrical double layer formation: water networks matter. Proc. Nat. Acad. Sci USA 2021 118, e2108568118.
Song, J.; Kwon, S.; Hossain, M.D.; Chen, S.; Li, Z.; Goddard, W.A. Reaction Mechanism and Strategy for Optimizing the Hydrogen Evolution Reaction on Single-Layer 1T′ WSe2 and WTe2 Based on Grand Canonical Potential Kinetics. ACS Appl. Mater. Interfaces 2021 13, 55611–55620.
Kaiser, W.; Carignano, M.; Alothman, A.A.; Mosconi, E.; Kachmar, A.; Goddard, W.A.; De Angelis, F., First-Principles Molecular Dynamics in Metal-Halide Perovskites: Contrasting Generalized Gradient Approximation and Hybrid Functionals. J. Phys. Chem. Lett. 2021 12, 11886−11893.
Kong, C. J.; Warren, E. L.; Greenaway, A. L.; Prabhakar, R. R.; Tamboli, A. C.; Ager, J. W., Design Principles of Tandem Cascade Photoelectrochemical Devices. Sustainable Energy Fuels 2021 5, 6361-6371.
DOI: 10.1039/D1SE01322J
Tang, M.T.; Peng, H.-J.; Stenlid, J.H.; Abild-Pedersen, F., Exploring trends on coupling mechanisms towards C3 product formation in CO2R. J. Phys. Chem. C 2021 125, 26437−26447.
Palfey, W.R.; Rossman, G.R.; Goddard, W.A., Structure, Energetics, and Spectra for the Oxygen Vacancy in Rutile: Prominence of the Ti–Hₒ–Ti Bond. J. Phys. Chem. Lett. 2021 12, 10175–10181.
Bui, J. C., Corpus, K. R. M., Bell, A. T., & Weber, A. Z, On the nature of water dissociation in bipolar membranes. J. Phys. Chem. C 2021, 125, 45, 24974-24987.
Liu, H.; Klein, I.M.; Michelsen, J.M.; Cushing, S.K., Element-specific electronic and structural dynamics using transient XUV and soft X-ray spectroscopy. Chem. 2021
Kim, C.; Bui, J.C.; Luo, X.; Cooper, J.K.; Kusoglu, A.; Weber, A.Z.; Bell, A.T., Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bi-layer ionomer coatings. Nature Energy 2021.
Lai, Y.; Watkins, N.; Rosas-Hernández, A.; Thevenon, A.; Heim, G.; Wu, Y.; Zhou, L.; Peters, J.C.; Gregoire, J.; Agapie, T. Breaking Scaling Relationships in CO2 Reduction on Copper Alloys with Organic Additives. ACS Cent. Science 2021.
Li, M.; Zhang, B.; Cheng, T.; Yo, S.; Louisia, S.; Chen, C.; Chen, S.; Cestellos-Blanco, S.; Goddard, W.A.; Yang, P., Sulfur-doped graphene anchoring of ultrafine Au25 nanoclusters for electrocatalysis. Nano Research 2021.
Cheng, W.-H.; de la Calle, A.; Atwater, H.A.; Stechel, E.B.; Xiang, C., Hydrogen from sunlight and water: a side-by-side comparison between photoelectrochemical and solar thermochemical water-splitting. ACS Energy Lett. 2021, 6, 9, 3096-3113.
Richter, M.H.; … ; Gregoire, J.M, Band Edge Energy Tuning through Electronic Character Hybridization in Ternary Metal Vanadates. Chem. Mater. 2021.
Kwon, S.; Kim, Y.-G.; Baricuatro, J.H.; Goddard, W.A., Dramatic Change in the Step Edges of the Cu(100) Electrocatalyst upon Exposure to CO: Operando Observations by Electrochemical STM and Explanation Using Quantum Mechanical Calculations. ACS Catal. 2021 11, 12068-112074;
Zhang, Z.; Liu, B.; Quinteros, F.; Zhai, X.; Wang, Q.; Han, W.; Xie, E.; Reyes-Lillo, S.E.; Cooper, J.K., Understanding the Role of Oxygen and Hydrogen Defects in Modulating the Optoelectronic Properties of P-Type Metal Oxide Semiconductors. Chemistry of Materials 2021.
Maliyov, I.; Park, J.; Bernardi, M., Ab initio electron dynamics in high electric fields: Accurate prediction of velocity-field curves. Phys. Rev. B 2021, 104, L100303.
Welch, A.J.; Fenwick, A.Q.; Bohme, A.; Chen, H.-Y.; Sullivan, I.; Li, X.; DuChene, J.S.; Xiang, C.; Atwater, H.A., Operando Local pH Measurement within Gas Diffusion Electrodes Performing Electrochemical Carbon Dioxide Reduction. J Phys. Chem. C 2021.
Gauthier, J.A.; Stenlid, J.H.; Abild-Pedersen, F.; Head-Gordon, M.; Bell, A.T., The Role of Roughening to Enhance Selectivity to C2+Products during CO2 Electroreduction on Copper. Acs Energy Lett. 2021, 6, 3252-3260.
Andriuc, O.; Siron, M.; Montoya, J.H.; Horton, M.; and Persson, K.A., Automated Adsorption Workflow for Semiconductor Surfaces and the Application to Zinc Telluride. J. Chem. Inf. Model. 2021, 61, 8, 3908–3916.
Yang, H.; Negreiros, F.R.; Sun, Q.; Xie, M.; Sementa, L,; Stener, M.; Ye, Y.; Fortunelli, A.; Goddard, W.A.; Cheng, T., Predictions of chemical shifts for reactive intermediates in CO2 reduction under operando conditions. Applied Materials and Interfaces 2021, 13, 31554-31560.
Musgrave III, C. B.; Morozov, S,.; Schinski, W.L.; Goddard, W.A., Reduction of N₂ to Ammonia by Phosphate Molten Salt and Li Electrode: Proof of Concept Using Quantum Mechanics. J. Phys. Chem. Lett. 2021, 12, 6, 1696–1701.
Lin, M.; Digdaya, I.; Xiang, C., Modeling the electrochemical behavior and interfacial junction profiles of bipolar membranes at solar flux relevant operating current densities. Sustainable Energy Fuels 2021 5, 2149-2158.
DOI: 10.1039/D1SE00201E
Ye, Y.; Su, H.; Lee, K.-J.; Valero-Vidal, C.; Blum, M.; Yano, J.; Crumlin, E. J., Carbon Dioxide adsorption and activation on Gallium Phosphide surface monitored by ambient pressure X-ray photoelectron spectroscopy. J. Phys. D: Appl. Phys. 2021 54, 234002.
Baricuatro, J.; Kwon, S.; Kim, Y.-G.; Cummins, K.; Naserifar, S.; Goddard, W. A., Operando electrochemical spectroscopy for CO on Cu(100) at pH 1 to 13: Validation of Grand Canonical Potential predictions. ACS Catalysis 2021, 11 (5) 3173-3181.
Hait, D.; Liang, Y.H.; Head-Gordon, M., Too big, too small or just right? A benchmark assessment of density functional theory for predicting the spatial extent of the electron density of small chemical systems. J. Chem. Phys. 2021 154, 074109.
DOI: 10.1063/5.0038694
Welch, A. J.; Digdaya, I. A.; Kent, R.; Ghougassian, P.; Atwater, H.A.; Xiang, C., Comparative Technoeconomic Analysis of Renewable Generation of Methane Using Sunlight, Water, and Carbon Dioxide. ACS Energy Letters 2021 6 (4), 1540-1549.
Naserifar, S.; Chen, Y.; Kwon, S.; Xiao, H.; Goddard, W.A, Artificial Intelligence and QM/MM with a Polarizable Reactive Force Field for Next- Generation Electrocatalysts. Matter 2021, 4, 195–216.
Dey, A; Houle, F.A.; Lubner, C.E.; Sevilla, M.; Shaw, W.J., Introduction to (photo)electrocatalysis for renewable energy. (Editorial) Chem. Commun. 2021, 57, 1540-1542.
DOI: 10.1039/D0CC90530E
Peng, H.; Tang, M.T.; Liu, X.; Lamoureaux, P.S.; Bajdich, M; Abild-Pedersen, F, The role of atomic carbon in directing electrochemical CO₂ reduction to multi carbon products. Energy Environ. Sci. 2021, 14, 473-482.
DOI: 10.1039/D0EE02826F
Sharifian, R.; Wagterveld, R.M.; Digdaya, A.; Xiang, C.; Vermaas, D.A., Electrochemical carbon dioxide capture to close the carbon cycle. (Review Article) Energy Environ. Sci., 2021 14, 781-814.
DOI: 10.1039/D0EE03382K
Wang, L.; … ; Gregoire, J.; Abild-Pedersen, F.; Jaramillo, T.F.; Hahn, C., Bimetallic effects on Zn-Cu electrocatalysts enhance activity and selectivity for the conversion of CO₂ to CO. Chem Catalysis 2021.
Li, R.; Cheng, W.H.; Richter, M.H.; DuChene, J.S.; Tian, W.; Li, C.; Atwater, H.A., Unassisted Highly Selective Gas-Phase CO₂ Reduction with a Plasmonic Au/p-GaN Photocatalyst Using H₂O as an Electron Donor. ACS Energy Letters, 2021 6, 1849-1856.
Johnson, S.I.; Blakemore, J.D.; Brunschwig, B. S.; Lewis, N. S.; Gray, H. B.; Goddard, W. A., III; Persson, P., Design of robust 2,2′-bipyridine ligand linkers for the stable immobilization of molecular catalysts on silicon(111) surfaces. Phys. Chem. Chem. Phys., 2021 23, 9921-9929.
DOI: 10.1039/D1CP00545F
Hait, D.; Head-Gordon, M., Orbital Optimized Density Functional Theory for Electronic Excited States. J. Phys. Chem. Lett. 2021 12, 4517−4529.
Liu, G.; Lee, M.:Kwon, S.; Zeng, G.; Eichhorn, J.; Buckley, A.K.; Tpste, F.D.; Goddard, W.A.; Toma, F.M., CO₂ reduction on pure Cu produces only H₂ after subsurface O is depleted: Theory and experiment. Proceedings of the National Academy of Sciences 2021 118 e2012649118.
Nesbitt, N.T.; Smith, W.A., Water and solute activities regulate CO₂ reduction in gas diffusion electrodes. Journal of Physical Chemistry C 2021 168, 044505.
2020
Lee, S.H.; Lin, J.; Farmand, M.; Landers, A.T.; Feaster, J.T.; Beeman, J.; Ye, Y.; Yano, J.; Mehta, A; Davis, R.; Jaramillo, T.F.; Hahn, C.; Drisdell, W, Oxidation State and Surface Reconstruction of Cu under CO₂ Reduction Conditions from in-situ X-ray Characterization. J. Am. Chem. Soc. 2020.
DOI: 10.1021/jacs.0c10017
Atwater, H.A., Seeing the light in energy use. (Perspective) Nanophotonics 2020, 10 (1), 115–116, eISSN 2192-8614.